Image-Text-to-Text
PEFT
Safetensors
Metric-ViPer / README.md
miaw1419's picture
Update README.md
8d1637c verified
|
raw
history blame
1.26 kB
---
{}
---
# ViPer: Metric
GitHub: https://github.com/sogandstorme/ViPer_Personalization
## Example
```bash
git clone https://github.com/sogandstorme/ViPer_Personalization.git
cd ViPer_Personalization
```
```python
from metric import (
set_device,
load_context_images,
initialize_processor_and_model,
calculate_score
)
# Ensure that the number of liked and disliked images are the same
negative_image_paths = [
"disliked/0.png",
"disliked/1.png",
"disliked/2.png",
"disliked/3.png",
"disliked/4.png",
"disliked/5.png",
"disliked/6.png",
"disliked/7.png",
"disliked/8.png",
]
positive_image_paths = [
"liked/0.png",
"liked/1.png",
"liked/2.png",
"liked/3.png",
"liked/4.png",
"liked/5.png",
"liked/6.png",
"liked/7.png",
"liked/8.png",
]
# Specify the address of the query image
query_image = "query.png"
device = set_device("cuda:0")
# Initialize processor and model
device = set_device("cuda:0")
context_images = load_context_images(negative_image_paths, positive_image_paths)
processor, model = initialize_processor_and_model(device)
# Calculate and print score
score = calculate_score(processor, model, context_images, query_image)
print(score)
```