ELITE / README.md
csyxwei's picture
readme and new requirements
2e7bc51
|
raw
history blame
6.14 kB

ELITE: Encoding Visual Concepts into Textual Embeddings for Customized Text-to-Image Generation

Getting Started


Environment Setup

git clone https://github.com/csyxwei/ELITE.git
cd ELITE
conda create -n elite python=3.9
conda activate elite
pip install -r requirements.txt

Pretrained Models

We provide the pretrained checkpoints in Google Drive. One can download them and save to the directory checkpoints.

Setting up Diffusers

Our code is built on the diffusers, and you can follow the guideline here to set it.

Customized Generation

We provide the testing dataset in test_datasets, which contains both images and object masks. For testing, you can run,

export MODEL_NAME="CompVis/stable-diffusion-v1-4"
export DATA_DIR='./test_datasets/'
CUDA_VISIBLE_DEVICES=0 python inference_local.py \
  --pretrained_model_name_or_path=$MODEL_NAME \
  --test_data_dir=$DATA_DIR \
  --output_dir="./outputs/local_mapping"  \
  --suffix="object" \
  --template="a photo of a S" \
  --llambda="0.8" \
  --global_mapper_path="./checkpoints/global_mapper.pt" \
  --local_mapper_path="./checkpoints/local_mapper.pt"

or you can use the shell script:

bash inference_local.sh

If you want to test your customized dataset, you should align the image to ensure the object is at the center of image, and also provide the corresponding object mask. The object mask can be obtained by image-matting-app, or other image matting methods.

Training


Preparing Dataset

We use the test dataset of Open-Images V6 to train our ELITE. You can prepare the dataset as follows:

  • Download Open-Images test dataset from CVDF's site and unzip it to the directory datasets/Open_Images/images/test.
  • Download attribute names file oidv6-attributes-description.csv of Open-Images test dataset from Open-Images official site and save it to the directory datasets/Open_Images/annotations/.
  • Download bbox annotations file test-annotations-bbox.csv of Open-Images test dataset from Open-Images official site and save it to the directory datasets/Open_Images/annotations/.
  • Download segmentation annotations of Open-Images test dataset from Open-Images official site and unzip them to the directory datasets/Open_Images/segs/test. And put the test-annotations-object-segmentation.csv into datasets/Open_Images/annotations/.
  • Obtain the mask bbox by running the following command:
    python data_scripts/cal_bbox_by_seg.py
    

The final data structure is like this:

datasets
β”œβ”€β”€ Open_Images
β”‚  β”œβ”€β”€ annotations
β”‚  β”‚  β”œβ”€β”€ oidv6-class-descriptions.csv
β”‚  β”‚  β”œβ”€β”€ test-annotations-object-segmentation.csv
β”‚  β”‚  β”œβ”€β”€ test-annotations-bbox.csv
β”‚  β”œβ”€β”€ images
β”‚  β”‚  β”œβ”€β”€ test
β”‚  β”‚  β”‚  β”œβ”€β”€ xxx.jpg
β”‚  β”‚  β”‚  β”œβ”€β”€ ...
β”‚  β”œβ”€β”€ segs
β”‚  β”‚  β”œβ”€β”€ test
β”‚  β”‚  β”‚  β”œβ”€β”€ xxx.png
β”‚  β”‚  β”‚  β”œβ”€β”€ ...
β”‚  β”‚  β”œβ”€β”€ test_bbox_dict.npy

Training Global Mapping Network

To train the global mapping network, run the following command:

export MODEL_NAME="CompVis/stable-diffusion-v1-4"
export DATA_DIR='./datasets/Open_Images/'
CUDA_VISIBLE_DEVICES=0,1,2,3 accelerate launch --config_file 4_gpu.json --main_process_port 25656 train_global.py \
  --pretrained_model_name_or_path=$MODEL_NAME \
  --train_data_dir=$DATA_DIR \
  --placeholder_token="S" \
  --resolution=512 \
  --train_batch_size=4 \
  --gradient_accumulation_steps=4 \
  --max_train_steps=200000 \
  --learning_rate=1e-06 --scale_lr \
  --lr_scheduler="constant" \
  --lr_warmup_steps=0 \
  --output_dir="./elite_experiments/global_mapping" \
  --save_steps 200

or you can use the shell script:

bash train_global.sh

Training Local Mapping Network

After the global mapping is trained, you can train the local mapping by running the following command:

export MODEL_NAME="CompVis/stable-diffusion-v1-4"
export DATA_DIR='/home/weiyuxiang/datasets/Open_Images/'
CUDA_VISIBLE_DEVICES=0,1,2,3 accelerate launch --config_file 4_gpu.json --main_process_port 25657 train_local.py \
  --pretrained_model_name_or_path=$MODEL_NAME \
  --train_data_dir=$DATA_DIR \
  --placeholder_token="S" \
  --resolution=512 \
  --train_batch_size=2 \
  --gradient_accumulation_steps=4 \
  --max_train_steps=200000 \
  --learning_rate=1e-5 --scale_lr \
  --lr_scheduler="constant" \
  --lr_warmup_steps=0 \
  --global_mapper_path "./elite_experiments/global_mapping/mapper_070000.pt" \
  --output_dir="./elite_experiments/local_mapping" \
  --save_steps 200

or you can use the shell script:

bash train_local.sh

Citation

@article{wei2023elite,
  title={ELITE: Encoding Visual Concepts into Textual Embeddings for Customized Text-to-Image Generation},
  author={Wei, Yuxiang and Zhang, Yabo and Ji, Zhilong and Bai, Jinfeng and Zhang, Lei and Zuo, Wangmeng},
  journal={arXiv preprint arXiv:2302.13848},
  year={2023}
}

Acknowledgements

This code is built on diffusers. We thank the authors for sharing the codes.