Text-to-Image
Diffusers
Safetensors
text-generation-inference

Pretrained SD-1.5 weight for SePPO: Semi-Policy Preference Optimization for Diffusion Alignment

See Github Repo: SePPO

Paper Report: Daily Paper

Inference Code:

import os
import argparse
import numpy as np
import torch
from diffusers import StableDiffusionPipeline, UNet2DConditionModel
from PIL import Image

torch.set_grad_enabled(False)

if __name__ == "__main__":
    parser = argparse.ArgumentParser(description="Generate images and calculate scores.")
    parser.add_argument('--unet_checkpoint', type=str, required=True, help="Path to the UNet model checkpoint")
    parser.add_argument('--prompt', type=str, required=True, help="Prompt")

    args = parser.parse_args()

    unet = UNet2DConditionModel.from_pretrained(args.unet_checkpoint, torch_dtype=torch.float16).to('cuda')

    pipe = StableDiffusionPipeline.from_pretrained("pt-sk/stable-diffusion-1.5", torch_dtype=torch.float16)

    pipe = pipe.to('cuda')
    pipe.safety_checker = None
    pipe.unet = unet
    generator = torch.Generator(device='cuda').manual_seed(0)
    gs = 7.5

    ims = pipe(prompt=args.prompt, generator=generator, guidance_scale=gs).images[0]
    img_path = os.path.join('SePPO', "0.png")
    
    if isinstance(ims, np.ndarray):
        ims = Image.fromarray(ims)
    ims.save(img_path, format='PNG')
Downloads last month
13
Inference Examples
This model does not have enough activity to be deployed to Inference API (serverless) yet. Increase its social visibility and check back later, or deploy to Inference Endpoints (dedicated) instead.

Model tree for DwanZhang/SePPO

Finetuned
(53)
this model

Dataset used to train DwanZhang/SePPO