File size: 16,764 Bytes
18609ed |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 |
"""
- Copyright (c) 2025 DuYu (No.202103180009, [email protected]), Faculty of Computer Science and Technology, Qilu University of Technology (Shandong Academy of Sciences).
- 基于Transformer的汉语拼音序列转汉字序列模型 训练与测试代码
- 文件名:run.py
"""
import re
import warnings
import numpy as np
import pandas as pd
import matplotlib.pyplot as plt
import torch
import torch.nn as nn
import torch.optim as optim
import torch.nn.functional as F
from torch.utils.data import Dataset, DataLoader
from tqdm import tqdm
from collections import Counter
warnings.filterwarnings("ignore") # 全局禁用警告信息,开发时可去除
# 设置随机种子保证可重复性
torch.manual_seed(525200)
np.random.seed(40004004)
# 检查是否有可用的GPU
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
print(f"Using device: {device}")
# 1. 数据读取与预处理
class PinyinHanziDataset(Dataset):
def __init__(self, csv_file, max_length=15):
self.data = pd.read_csv(csv_file, header=None, names=['hanzi', 'pinyin'])
self.max_length = max_length
# 构建词汇表
self._build_vocab()
def _tokenize_hanzi(self, s):
"""将文本分割为汉字、英文单词和标点符号的混合token"""
pattern = re.compile(
r'([\u4e00-\u9fff\u3000-\u303f\uff00-\uffef]|[a-zA-Z.,!?;:\'"]+|\d+|\s)'
)
tokens = []
for token in pattern.finditer(s):
if token.group().strip(): # 忽略纯空格
tokens.append(token.group())
return tokens
def _build_vocab(self):
# 处理汉字词汇表
hanzi_counter = Counter()
pinyin_counter = Counter()
for _, row in self.data.iterrows():
# 使用新的tokenize方法处理汉字
hanzi_tokens = self._tokenize_hanzi(row['hanzi'])
hanzi_counter.update(hanzi_tokens)
# 拼音处理:按空格分割
pinyin_tokens = row['pinyin'].split()
pinyin_counter.update(pinyin_tokens)
# 添加特殊token
self.hanzi_vocab = ['<pad>', '<unk>', '<sos>', '<eos>'] + [char for char, _ in hanzi_counter.most_common()]
self.pinyin_vocab = ['<pad>', '<unk>', '<sos>', '<eos>'] + [pinyin for pinyin, _ in
pinyin_counter.most_common()]
# 创建token到id的映射
self.hanzi2idx = {char: idx for idx, char in enumerate(self.hanzi_vocab)}
self.idx2hanzi = {idx: char for idx, char in enumerate(self.hanzi_vocab)}
self.pinyin2idx = {pinyin: idx for idx, pinyin in enumerate(self.pinyin_vocab)}
self.idx2pinyin = {idx: pinyin for idx, pinyin in enumerate(self.pinyin_vocab)}
def __len__(self):
return len(self.data)
def __getitem__(self, idx):
hanzi_seq = self.data.iloc[idx]['hanzi']
pinyin_seq = self.data.iloc[idx]['pinyin']
# 将汉字序列转换为token id序列
hanzi_tokens = ['<sos>'] + self._tokenize_hanzi(hanzi_seq) + ['<eos>']
hanzi_ids = [self.hanzi2idx.get(token, self.hanzi2idx['<unk>']) for token in hanzi_tokens]
# 将拼音序列转换为token id序列
pinyin_tokens = ['<sos>'] + pinyin_seq.split() + ['<eos>']
pinyin_ids = [self.pinyin2idx.get(token, self.pinyin2idx['<unk>']) for token in pinyin_tokens]
# 截断或填充序列
hanzi_ids = hanzi_ids[:self.max_length]
pinyin_ids = pinyin_ids[:self.max_length]
hanzi_padding = [self.hanzi2idx['<pad>']] * (self.max_length - len(hanzi_ids))
pinyin_padding = [self.pinyin2idx['<pad>']] * (self.max_length - len(pinyin_ids))
hanzi_ids += hanzi_padding
pinyin_ids += pinyin_padding
return {
'pinyin': torch.tensor(pinyin_ids, dtype=torch.long),
'hanzi': torch.tensor(hanzi_ids, dtype=torch.long),
'hanzi_input': torch.tensor(hanzi_ids[:-1], dtype=torch.long),
'hanzi_target': torch.tensor(hanzi_ids[1:], dtype=torch.long)
}
# 2. Transformer模型定义
class TransformerModel(nn.Module):
def __init__(self, pinyin_vocab_size, hanzi_vocab_size, d_model=256, nhead=8, num_encoder_layers=6,
num_decoder_layers=6, dim_feedforward=1024, dropout=0.075):
super(TransformerModel, self).__init__()
self.d_model = d_model
# 拼音嵌入层
self.pinyin_embedding = nn.Embedding(pinyin_vocab_size, d_model)
# 汉字嵌入层
self.hanzi_embedding = nn.Embedding(hanzi_vocab_size, d_model)
# 位置编码
self.positional_encoding = PositionalEncoding(d_model, dropout)
# Transformer模型
self.transformer = nn.Transformer(
d_model=d_model,
nhead=nhead,
num_encoder_layers=num_encoder_layers,
num_decoder_layers=num_decoder_layers,
dim_feedforward=dim_feedforward,
dropout=dropout
)
# 输出层
self.fc_out = nn.Linear(d_model, hanzi_vocab_size)
def forward(self, pinyin, hanzi_input):
# 嵌入层
pinyin_embedded = self.pinyin_embedding(pinyin) * np.sqrt(self.d_model)
hanzi_embedded = self.hanzi_embedding(hanzi_input) * np.sqrt(self.d_model)
# 位置编码
pinyin_embedded = self.positional_encoding(pinyin_embedded)
hanzi_embedded = self.positional_encoding(hanzi_embedded)
# 调整维度顺序:(seq_len, batch_size, d_model)
pinyin_embedded = pinyin_embedded.permute(1, 0, 2)
hanzi_embedded = hanzi_embedded.permute(1, 0, 2)
# 创建mask
src_mask = self._generate_square_subsequent_mask(pinyin_embedded.size(0)).to(device)
tgt_mask = self._generate_square_subsequent_mask(hanzi_embedded.size(0)).to(device)
# Transformer前向传播
output = self.transformer(
src=pinyin_embedded,
tgt=hanzi_embedded,
src_key_padding_mask=self._create_padding_mask(pinyin),
tgt_key_padding_mask=self._create_padding_mask(hanzi_input),
memory_key_padding_mask=self._create_padding_mask(pinyin),
src_mask=src_mask,
tgt_mask=tgt_mask
)
# 输出层,输出前将维度调整回(batch_size, seq_len, d_model)
output = output.permute(1, 0, 2)
output = self.fc_out(output)
return output
def _generate_square_subsequent_mask(self, sz):
return torch.triu(torch.full((sz, sz), float('-inf')), diagonal=1)
def _create_padding_mask(self, seq):
return seq == 0 # 假设<pad>的id是0
# 3. 位置编码定义
class PositionalEncoding(nn.Module):
def __init__(self, d_model, dropout=0.1, max_len=512):
super(PositionalEncoding, self).__init__()
self.dropout = nn.Dropout(p=dropout)
position = torch.arange(max_len).unsqueeze(1)
div_term = torch.exp(torch.arange(0, d_model, 2) * (-np.log(10000.0) / d_model))
pe = torch.zeros(max_len, 1, d_model)
pe[:, 0, 0::2] = torch.sin(position * div_term)
pe[:, 0, 1::2] = torch.cos(position * div_term)
self.register_buffer('pe', pe)
def forward(self, x):
x = x + self.pe[:x.size(0)]
return self.dropout(x)
# 4. 建模(包装器定义)
class PinyinHanziTransformer:
def __init__(self, model=None, dataset=None, config=None):
self.model = model
self.dataset = dataset
self.config = config or {}
def save(self, filepath):
"""保存整个模型、词汇表和配置到单个文件"""
save_data = {
'model_state_dict': self.model.state_dict(),
'hanzi_vocab': self.dataset.hanzi_vocab,
'pinyin_vocab': self.dataset.pinyin_vocab,
'hanzi2idx': self.dataset.hanzi2idx,
'idx2hanzi': self.dataset.idx2hanzi,
'pinyin2idx': self.dataset.pinyin2idx,
'idx2pinyin': self.dataset.idx2pinyin,
'max_length': self.dataset.max_length,
'config': self.config
}
torch.save(save_data, filepath)
@classmethod
def load(cls, filepath, device='cpu'):
"""从文件加载整个模型"""
save_data = torch.load(filepath, map_location=device)
# 创建虚拟数据集对象以保存词汇表信息
class DummyDataset:
pass
dataset = DummyDataset()
dataset.hanzi_vocab = save_data['hanzi_vocab']
dataset.pinyin_vocab = save_data['pinyin_vocab']
dataset.hanzi2idx = save_data['hanzi2idx']
dataset.idx2hanzi = save_data['idx2hanzi']
dataset.pinyin2idx = save_data['pinyin2idx']
dataset.idx2pinyin = save_data['idx2pinyin']
dataset.max_length = save_data['max_length']
# 初始化模型
config = save_data['config']
model = TransformerModel(
pinyin_vocab_size=len(dataset.pinyin_vocab),
hanzi_vocab_size=len(dataset.hanzi_vocab),
**config
).to(device)
model.load_state_dict(save_data['model_state_dict'])
return cls(model=model, dataset=dataset, config=config)
@staticmethod
def top_k_sampling(logits, k=5, temperature=1.0):
logits = logits / temperature
probs = F.softmax(logits, dim=-1) # shape: (1, vocab_size)
topk_probs, topk_indices = torch.topk(probs, k, dim=-1) # shape: (1, k)
# 从 top-k 中随机采样一个 index(在 top k 里的位置)
sampled_index = torch.multinomial(topk_probs, num_samples=1) # shape: (1, 1)
# 找到对应的真正 vocab 索引
next_token = torch.gather(topk_indices, dim=1, index=sampled_index) # shape: (1, 1)
# Instead of directly using .item(), ensure we're handling the tensor correctly
return next_token.squeeze().item() # .squeeze() to get rid of the extra dimension and then .item()
def predict(self, pinyin_seq, max_length=None, k=3, temperature=1.0):
"""预测函数(使用top-k采样)"""
self.model.eval()
max_length = max_length or self.dataset.max_length
# 拼音转ID
pinyin_tokens = ['<sos>'] + pinyin_seq.split() + ['<eos>']
pinyin_ids = [self.dataset.pinyin2idx.get(token, self.dataset.pinyin2idx['<unk>']) for token in pinyin_tokens]
pinyin_ids = pinyin_ids[:max_length]
pinyin_ids += [self.dataset.pinyin2idx['<pad>']] * (max_length - len(pinyin_ids))
pinyin_tensor = torch.tensor(pinyin_ids, dtype=torch.long).unsqueeze(0).to(self.model.device)
# 初始化汉字序列
hanzi_ids = [self.dataset.hanzi2idx['<sos>']]
for i in range(max_length - 1):
hanzi_tensor = torch.tensor(hanzi_ids, dtype=torch.long).unsqueeze(0).to(self.model.device)
with torch.no_grad():
output = self.model(pinyin_tensor, hanzi_tensor) # (1, seq_len, vocab_size)
logits = output[:, -1, :] # 取最后一个位置的logits,(1, vocab_size)
# 使用top-k采样
next_token = PinyinHanziTransformer.top_k_sampling(logits, k=k, temperature=temperature)
hanzi_ids.append(next_token)
if next_token == self.dataset.hanzi2idx['<eos>']:
break
# 转换为汉字序列
hanzi_seq = [self.dataset.idx2hanzi[idx] for idx in hanzi_ids[1:-1]] # 去掉<sos>和可能的<eos>
return ''.join(hanzi_seq)
# 在TransformerModel类中添加device属性
@property
def device(self):
return next(self.parameters()).device
TransformerModel.device = device
# 5. 训练函数定义
def train_model(model, dataloader, optimizer, criterion, epoch):
model.train()
total_loss = 0
progress_bar = tqdm(dataloader, desc=f"Epoch {epoch}")
for batch in progress_bar:
pinyin = batch['pinyin'].to(device)
hanzi_input = batch['hanzi_input'].to(device)
hanzi_target = batch['hanzi_target'].to(device)
# 前向传播
output = model(pinyin, hanzi_input)
# 计算损失
loss = criterion(output.reshape(-1, output.size(-1)), hanzi_target.reshape(-1))
# 反向传播
optimizer.zero_grad()
loss.backward()
optimizer.step()
total_loss += loss.item()
progress_bar.set_postfix(loss=f"{loss.item():.3f}")
return total_loss / len(dataloader)
# 4. 评估函数定义
def evaluate_model(model, dataloader, criterion):
model.eval()
total_loss = 0
with torch.no_grad():
for batch in tqdm(dataloader, desc="Evaluating"):
pinyin = batch['pinyin'].to(device)
hanzi_input = batch['hanzi_input'].to(device)
hanzi_target = batch['hanzi_target'].to(device)
output = model(pinyin, hanzi_input)
loss = criterion(output.reshape(-1, output.size(-1)), hanzi_target.reshape(-1))
total_loss += loss.item()
return total_loss / len(dataloader)
# 6. 模型训练主函数
def train_main():
# 参数设置 训练前请调整这些参数
batch_size = 256 # 批大小
num_epochs = 33 # 迭代轮数
learning_rate = 0.0001 # 学习率
max_length = 14 # 截断长度
train_test_ratio = 0.95 # 数据集中训练集与测试集数据量比例
dataset_filepath = 'pinyin2hanzi.csv' # 数据集CSV文件路径
model_config = { # 模型配置参数
'd_model': 512, # 词嵌入维度
'nhead': 16, # 多头注意力层注意力头数
'num_encoder_layers': 8, # Transformer编码器块数
'num_decoder_layers': 6, # Transformer解码器块数
'dim_feedforward': 1024, # Transformer前馈层维度
'dropout': 0.07 # dropout比例
}
# 加载数据集
dataset = PinyinHanziDataset(dataset_filepath, max_length=max_length)
# 分割训练集和测试集
train_size = int(train_test_ratio * len(dataset))
test_size = len(dataset) - train_size
train_dataset, test_dataset = torch.utils.data.random_split(dataset, [train_size, test_size])
# 创建DataLoader
train_loader = DataLoader(train_dataset, batch_size=batch_size, shuffle=True)
test_loader = DataLoader(test_dataset, batch_size=batch_size, shuffle=False)
# 初始化模型包装器
transformer = PinyinHanziTransformer(
model=TransformerModel(
pinyin_vocab_size=len(dataset.pinyin_vocab),
hanzi_vocab_size=len(dataset.hanzi_vocab),
**model_config
).to(device),
dataset=dataset,
config=model_config
)
# 损失函数和优化器
criterion = nn.CrossEntropyLoss(ignore_index=dataset.hanzi2idx['<pad>'])
optimizer = optim.Adam(transformer.model.parameters(), lr=learning_rate)
scheduler = torch.optim.lr_scheduler.StepLR(optimizer, step_size=45, gamma=0.41)
# 训练循环
train_losses = []
test_losses = []
for epoch in range(1, num_epochs + 1):
train_loss = train_model(transformer.model, train_loader, optimizer, criterion, epoch)
test_loss = evaluate_model(transformer.model, test_loader, criterion)
train_losses.append(train_loss)
test_losses.append(test_loss)
scheduler.step()
print(f"Epoch {epoch}: Train Loss = {train_loss:.4f}, Test Loss = {test_loss:.4f}")
# 保存整个模型到当前目录(包括词汇表等信息)
# if epoch % 7 == 0 or epoch == num_epochs:
transformer.save(f"pinyin2hanzi_transformer_epoch{epoch}.pth")
# 绘制损失曲线
plt.plot(train_losses, label='Train Loss')
plt.plot(test_losses, label='Test Loss')
plt.xlabel('Epoch')
plt.ylabel('Loss')
plt.legend()
plt.savefig('loss_curve.png')
# 7. 模型推理主函数
def use_main():
transformer = PinyinHanziTransformer.load("pinyin2hanzi_transformer.pth", device=str(device))
result = transformer.predict("hong2 yan2 bo2 ming4") # 应当输出:红颜薄命
print("预测结果: ", result)
if __name__ == "__main__":
# train_main() # 解除注释、修改参数,运行代码以开始训练
use_main() # 解除注释以使用模型
|