File size: 16,764 Bytes
18609ed
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
"""

- Copyright (c) 2025 DuYu (No.202103180009, [email protected]), Faculty of Computer Science and Technology, Qilu University of Technology (Shandong Academy of Sciences).

- 基于Transformer的汉语拼音序列转汉字序列模型 训练与测试代码

- 文件名:run.py

"""
import re
import warnings
import numpy as np
import pandas as pd
import matplotlib.pyplot as plt
import torch
import torch.nn as nn
import torch.optim as optim
import torch.nn.functional as F
from torch.utils.data import Dataset, DataLoader
from tqdm import tqdm
from collections import Counter

warnings.filterwarnings("ignore")  # 全局禁用警告信息,开发时可去除

# 设置随机种子保证可重复性
torch.manual_seed(525200)
np.random.seed(40004004)

# 检查是否有可用的GPU
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
print(f"Using device: {device}")


# 1. 数据读取与预处理
class PinyinHanziDataset(Dataset):
    def __init__(self, csv_file, max_length=15):
        self.data = pd.read_csv(csv_file, header=None, names=['hanzi', 'pinyin'])
        self.max_length = max_length

        # 构建词汇表
        self._build_vocab()

    def _tokenize_hanzi(self, s):
        """将文本分割为汉字、英文单词和标点符号的混合token"""
        pattern = re.compile(
            r'([\u4e00-\u9fff\u3000-\u303f\uff00-\uffef]|[a-zA-Z.,!?;:\'"]+|\d+|\s)'
        )

        tokens = []
        for token in pattern.finditer(s):
            if token.group().strip():  # 忽略纯空格
                tokens.append(token.group())

        return tokens

    def _build_vocab(self):
        # 处理汉字词汇表
        hanzi_counter = Counter()
        pinyin_counter = Counter()

        for _, row in self.data.iterrows():
            # 使用新的tokenize方法处理汉字
            hanzi_tokens = self._tokenize_hanzi(row['hanzi'])
            hanzi_counter.update(hanzi_tokens)

            # 拼音处理:按空格分割
            pinyin_tokens = row['pinyin'].split()
            pinyin_counter.update(pinyin_tokens)

        # 添加特殊token
        self.hanzi_vocab = ['<pad>', '<unk>', '<sos>', '<eos>'] + [char for char, _ in hanzi_counter.most_common()]
        self.pinyin_vocab = ['<pad>', '<unk>', '<sos>', '<eos>'] + [pinyin for pinyin, _ in
                                                                    pinyin_counter.most_common()]

        # 创建token到id的映射
        self.hanzi2idx = {char: idx for idx, char in enumerate(self.hanzi_vocab)}
        self.idx2hanzi = {idx: char for idx, char in enumerate(self.hanzi_vocab)}
        self.pinyin2idx = {pinyin: idx for idx, pinyin in enumerate(self.pinyin_vocab)}
        self.idx2pinyin = {idx: pinyin for idx, pinyin in enumerate(self.pinyin_vocab)}

    def __len__(self):
        return len(self.data)

    def __getitem__(self, idx):
        hanzi_seq = self.data.iloc[idx]['hanzi']
        pinyin_seq = self.data.iloc[idx]['pinyin']

        # 将汉字序列转换为token id序列
        hanzi_tokens = ['<sos>'] + self._tokenize_hanzi(hanzi_seq) + ['<eos>']
        hanzi_ids = [self.hanzi2idx.get(token, self.hanzi2idx['<unk>']) for token in hanzi_tokens]

        # 将拼音序列转换为token id序列
        pinyin_tokens = ['<sos>'] + pinyin_seq.split() + ['<eos>']
        pinyin_ids = [self.pinyin2idx.get(token, self.pinyin2idx['<unk>']) for token in pinyin_tokens]

        # 截断或填充序列
        hanzi_ids = hanzi_ids[:self.max_length]
        pinyin_ids = pinyin_ids[:self.max_length]

        hanzi_padding = [self.hanzi2idx['<pad>']] * (self.max_length - len(hanzi_ids))
        pinyin_padding = [self.pinyin2idx['<pad>']] * (self.max_length - len(pinyin_ids))

        hanzi_ids += hanzi_padding
        pinyin_ids += pinyin_padding

        return {
            'pinyin': torch.tensor(pinyin_ids, dtype=torch.long),
            'hanzi': torch.tensor(hanzi_ids, dtype=torch.long),
            'hanzi_input': torch.tensor(hanzi_ids[:-1], dtype=torch.long),
            'hanzi_target': torch.tensor(hanzi_ids[1:], dtype=torch.long)
        }


# 2. Transformer模型定义
class TransformerModel(nn.Module):
    def __init__(self, pinyin_vocab_size, hanzi_vocab_size, d_model=256, nhead=8, num_encoder_layers=6,

                 num_decoder_layers=6, dim_feedforward=1024, dropout=0.075):
        super(TransformerModel, self).__init__()

        self.d_model = d_model

        # 拼音嵌入层
        self.pinyin_embedding = nn.Embedding(pinyin_vocab_size, d_model)
        # 汉字嵌入层
        self.hanzi_embedding = nn.Embedding(hanzi_vocab_size, d_model)

        # 位置编码
        self.positional_encoding = PositionalEncoding(d_model, dropout)

        # Transformer模型
        self.transformer = nn.Transformer(
            d_model=d_model,
            nhead=nhead,
            num_encoder_layers=num_encoder_layers,
            num_decoder_layers=num_decoder_layers,
            dim_feedforward=dim_feedforward,
            dropout=dropout
        )

        # 输出层
        self.fc_out = nn.Linear(d_model, hanzi_vocab_size)

    def forward(self, pinyin, hanzi_input):
        # 嵌入层
        pinyin_embedded = self.pinyin_embedding(pinyin) * np.sqrt(self.d_model)
        hanzi_embedded = self.hanzi_embedding(hanzi_input) * np.sqrt(self.d_model)

        # 位置编码
        pinyin_embedded = self.positional_encoding(pinyin_embedded)
        hanzi_embedded = self.positional_encoding(hanzi_embedded)

        # 调整维度顺序:(seq_len, batch_size, d_model)
        pinyin_embedded = pinyin_embedded.permute(1, 0, 2)
        hanzi_embedded = hanzi_embedded.permute(1, 0, 2)

        # 创建mask
        src_mask = self._generate_square_subsequent_mask(pinyin_embedded.size(0)).to(device)
        tgt_mask = self._generate_square_subsequent_mask(hanzi_embedded.size(0)).to(device)

        # Transformer前向传播
        output = self.transformer(
            src=pinyin_embedded,
            tgt=hanzi_embedded,
            src_key_padding_mask=self._create_padding_mask(pinyin),
            tgt_key_padding_mask=self._create_padding_mask(hanzi_input),
            memory_key_padding_mask=self._create_padding_mask(pinyin),
            src_mask=src_mask,
            tgt_mask=tgt_mask
        )

        # 输出层,输出前将维度调整回(batch_size, seq_len, d_model)
        output = output.permute(1, 0, 2)
        output = self.fc_out(output)

        return output

    def _generate_square_subsequent_mask(self, sz):
        return torch.triu(torch.full((sz, sz), float('-inf')), diagonal=1)

    def _create_padding_mask(self, seq):
        return seq == 0  # 假设<pad>的id是0


# 3. 位置编码定义
class PositionalEncoding(nn.Module):
    def __init__(self, d_model, dropout=0.1, max_len=512):
        super(PositionalEncoding, self).__init__()
        self.dropout = nn.Dropout(p=dropout)

        position = torch.arange(max_len).unsqueeze(1)
        div_term = torch.exp(torch.arange(0, d_model, 2) * (-np.log(10000.0) / d_model))
        pe = torch.zeros(max_len, 1, d_model)
        pe[:, 0, 0::2] = torch.sin(position * div_term)
        pe[:, 0, 1::2] = torch.cos(position * div_term)
        self.register_buffer('pe', pe)

    def forward(self, x):
        x = x + self.pe[:x.size(0)]
        return self.dropout(x)


# 4. 建模(包装器定义)
class PinyinHanziTransformer:
    def __init__(self, model=None, dataset=None, config=None):
        self.model = model
        self.dataset = dataset
        self.config = config or {}

    def save(self, filepath):
        """保存整个模型、词汇表和配置到单个文件"""
        save_data = {
            'model_state_dict': self.model.state_dict(),
            'hanzi_vocab': self.dataset.hanzi_vocab,
            'pinyin_vocab': self.dataset.pinyin_vocab,
            'hanzi2idx': self.dataset.hanzi2idx,
            'idx2hanzi': self.dataset.idx2hanzi,
            'pinyin2idx': self.dataset.pinyin2idx,
            'idx2pinyin': self.dataset.idx2pinyin,
            'max_length': self.dataset.max_length,
            'config': self.config
        }
        torch.save(save_data, filepath)

    @classmethod
    def load(cls, filepath, device='cpu'):
        """从文件加载整个模型"""
        save_data = torch.load(filepath, map_location=device)

        # 创建虚拟数据集对象以保存词汇表信息
        class DummyDataset:
            pass

        dataset = DummyDataset()
        dataset.hanzi_vocab = save_data['hanzi_vocab']
        dataset.pinyin_vocab = save_data['pinyin_vocab']
        dataset.hanzi2idx = save_data['hanzi2idx']
        dataset.idx2hanzi = save_data['idx2hanzi']
        dataset.pinyin2idx = save_data['pinyin2idx']
        dataset.idx2pinyin = save_data['idx2pinyin']
        dataset.max_length = save_data['max_length']

        # 初始化模型
        config = save_data['config']
        model = TransformerModel(
            pinyin_vocab_size=len(dataset.pinyin_vocab),
            hanzi_vocab_size=len(dataset.hanzi_vocab),
            **config
        ).to(device)
        model.load_state_dict(save_data['model_state_dict'])

        return cls(model=model, dataset=dataset, config=config)

    @staticmethod
    def top_k_sampling(logits, k=5, temperature=1.0):
        logits = logits / temperature
        probs = F.softmax(logits, dim=-1)  # shape: (1, vocab_size)

        topk_probs, topk_indices = torch.topk(probs, k, dim=-1)  # shape: (1, k)

        # 从 top-k 中随机采样一个 index(在 top k 里的位置)
        sampled_index = torch.multinomial(topk_probs, num_samples=1)  # shape: (1, 1)

        # 找到对应的真正 vocab 索引
        next_token = torch.gather(topk_indices, dim=1, index=sampled_index)  # shape: (1, 1)

        # Instead of directly using .item(), ensure we're handling the tensor correctly
        return next_token.squeeze().item()  # .squeeze() to get rid of the extra dimension and then .item()

    def predict(self, pinyin_seq, max_length=None, k=3, temperature=1.0):
        """预测函数(使用top-k采样)"""
        self.model.eval()
        max_length = max_length or self.dataset.max_length

        # 拼音转ID
        pinyin_tokens = ['<sos>'] + pinyin_seq.split() + ['<eos>']
        pinyin_ids = [self.dataset.pinyin2idx.get(token, self.dataset.pinyin2idx['<unk>']) for token in pinyin_tokens]
        pinyin_ids = pinyin_ids[:max_length]
        pinyin_ids += [self.dataset.pinyin2idx['<pad>']] * (max_length - len(pinyin_ids))
        pinyin_tensor = torch.tensor(pinyin_ids, dtype=torch.long).unsqueeze(0).to(self.model.device)

        # 初始化汉字序列
        hanzi_ids = [self.dataset.hanzi2idx['<sos>']]

        for i in range(max_length - 1):
            hanzi_tensor = torch.tensor(hanzi_ids, dtype=torch.long).unsqueeze(0).to(self.model.device)

            with torch.no_grad():
                output = self.model(pinyin_tensor, hanzi_tensor)  # (1, seq_len, vocab_size)
                logits = output[:, -1, :]  # 取最后一个位置的logits,(1, vocab_size)

            # 使用top-k采样
            next_token = PinyinHanziTransformer.top_k_sampling(logits, k=k, temperature=temperature)
            hanzi_ids.append(next_token)

            if next_token == self.dataset.hanzi2idx['<eos>']:
                break

        # 转换为汉字序列
        hanzi_seq = [self.dataset.idx2hanzi[idx] for idx in hanzi_ids[1:-1]]  # 去掉<sos>和可能的<eos>
        return ''.join(hanzi_seq)

    # 在TransformerModel类中添加device属性
    @property
    def device(self):
        return next(self.parameters()).device

    TransformerModel.device = device


# 5. 训练函数定义
def train_model(model, dataloader, optimizer, criterion, epoch):
    model.train()
    total_loss = 0
    progress_bar = tqdm(dataloader, desc=f"Epoch {epoch}")

    for batch in progress_bar:
        pinyin = batch['pinyin'].to(device)
        hanzi_input = batch['hanzi_input'].to(device)
        hanzi_target = batch['hanzi_target'].to(device)

        # 前向传播
        output = model(pinyin, hanzi_input)

        # 计算损失
        loss = criterion(output.reshape(-1, output.size(-1)), hanzi_target.reshape(-1))

        # 反向传播
        optimizer.zero_grad()
        loss.backward()
        optimizer.step()

        total_loss += loss.item()
        progress_bar.set_postfix(loss=f"{loss.item():.3f}")

    return total_loss / len(dataloader)


# 4. 评估函数定义
def evaluate_model(model, dataloader, criterion):
    model.eval()
    total_loss = 0

    with torch.no_grad():
        for batch in tqdm(dataloader, desc="Evaluating"):
            pinyin = batch['pinyin'].to(device)
            hanzi_input = batch['hanzi_input'].to(device)
            hanzi_target = batch['hanzi_target'].to(device)

            output = model(pinyin, hanzi_input)
            loss = criterion(output.reshape(-1, output.size(-1)), hanzi_target.reshape(-1))
            total_loss += loss.item()

    return total_loss / len(dataloader)


# 6. 模型训练主函数
def train_main():
    # 参数设置 训练前请调整这些参数
    batch_size = 256  # 批大小
    num_epochs = 33  # 迭代轮数
    learning_rate = 0.0001  # 学习率
    max_length = 14  # 截断长度
    train_test_ratio = 0.95  # 数据集中训练集与测试集数据量比例
    dataset_filepath = 'pinyin2hanzi.csv'  # 数据集CSV文件路径
    model_config = {  # 模型配置参数
        'd_model': 512,  # 词嵌入维度
        'nhead': 16,  # 多头注意力层注意力头数
        'num_encoder_layers': 8,  # Transformer编码器块数
        'num_decoder_layers': 6,  # Transformer解码器块数
        'dim_feedforward': 1024,  # Transformer前馈层维度
        'dropout': 0.07  # dropout比例
    }

    # 加载数据集
    dataset = PinyinHanziDataset(dataset_filepath, max_length=max_length)

    # 分割训练集和测试集
    train_size = int(train_test_ratio * len(dataset))
    test_size = len(dataset) - train_size
    train_dataset, test_dataset = torch.utils.data.random_split(dataset, [train_size, test_size])

    # 创建DataLoader
    train_loader = DataLoader(train_dataset, batch_size=batch_size, shuffle=True)
    test_loader = DataLoader(test_dataset, batch_size=batch_size, shuffle=False)

    # 初始化模型包装器
    transformer = PinyinHanziTransformer(
        model=TransformerModel(
            pinyin_vocab_size=len(dataset.pinyin_vocab),
            hanzi_vocab_size=len(dataset.hanzi_vocab),
            **model_config
        ).to(device),
        dataset=dataset,
        config=model_config
    )

    # 损失函数和优化器
    criterion = nn.CrossEntropyLoss(ignore_index=dataset.hanzi2idx['<pad>'])
    optimizer = optim.Adam(transformer.model.parameters(), lr=learning_rate)
    scheduler = torch.optim.lr_scheduler.StepLR(optimizer, step_size=45, gamma=0.41)

    # 训练循环
    train_losses = []
    test_losses = []

    for epoch in range(1, num_epochs + 1):
        train_loss = train_model(transformer.model, train_loader, optimizer, criterion, epoch)
        test_loss = evaluate_model(transformer.model, test_loader, criterion)

        train_losses.append(train_loss)
        test_losses.append(test_loss)

        scheduler.step()
        print(f"Epoch {epoch}: Train Loss = {train_loss:.4f}, Test Loss = {test_loss:.4f}")

        # 保存整个模型到当前目录(包括词汇表等信息)
        # if epoch % 7 == 0 or epoch == num_epochs:
        transformer.save(f"pinyin2hanzi_transformer_epoch{epoch}.pth")

    # 绘制损失曲线
    plt.plot(train_losses, label='Train Loss')
    plt.plot(test_losses, label='Test Loss')
    plt.xlabel('Epoch')
    plt.ylabel('Loss')
    plt.legend()
    plt.savefig('loss_curve.png')


# 7. 模型推理主函数
def use_main():
    transformer = PinyinHanziTransformer.load("pinyin2hanzi_transformer.pth", device=str(device))
    result = transformer.predict("hong2 yan2 bo2 ming4")  # 应当输出:红颜薄命
    print("预测结果: ", result)


if __name__ == "__main__":
    # train_main()  # 解除注释、修改参数,运行代码以开始训练
    use_main()  # 解除注释以使用模型