上传预训练模型文件及代码
Browse files- pinyin2hanzi_transformer.pth +3 -0
- run.py +434 -0
pinyin2hanzi_transformer.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:a7d0c8e588e83f1d9b8dc9c961cca4410a5b20f6f6d912f854553ca2a0234b7b
|
3 |
+
size 250775353
|
run.py
ADDED
@@ -0,0 +1,434 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
"""
|
2 |
+
- Copyright (c) 2025 DuYu (No.202103180009, [email protected]), Faculty of Computer Science and Technology, Qilu University of Technology (Shandong Academy of Sciences).
|
3 |
+
- 基于Transformer的汉语拼音序列转汉字序列模型 训练与测试代码
|
4 |
+
- 文件名:run.py
|
5 |
+
"""
|
6 |
+
import re
|
7 |
+
import warnings
|
8 |
+
import numpy as np
|
9 |
+
import pandas as pd
|
10 |
+
import matplotlib.pyplot as plt
|
11 |
+
import torch
|
12 |
+
import torch.nn as nn
|
13 |
+
import torch.optim as optim
|
14 |
+
import torch.nn.functional as F
|
15 |
+
from torch.utils.data import Dataset, DataLoader
|
16 |
+
from tqdm import tqdm
|
17 |
+
from collections import Counter
|
18 |
+
|
19 |
+
warnings.filterwarnings("ignore") # 全局禁用警告信息,开发时可去除
|
20 |
+
|
21 |
+
# 设置随机种子保证可重复性
|
22 |
+
torch.manual_seed(525200)
|
23 |
+
np.random.seed(40004004)
|
24 |
+
|
25 |
+
# 检查是否有可用的GPU
|
26 |
+
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
|
27 |
+
print(f"Using device: {device}")
|
28 |
+
|
29 |
+
|
30 |
+
# 1. 数据读取与预处理
|
31 |
+
class PinyinHanziDataset(Dataset):
|
32 |
+
def __init__(self, csv_file, max_length=15):
|
33 |
+
self.data = pd.read_csv(csv_file, header=None, names=['hanzi', 'pinyin'])
|
34 |
+
self.max_length = max_length
|
35 |
+
|
36 |
+
# 构建词汇表
|
37 |
+
self._build_vocab()
|
38 |
+
|
39 |
+
def _tokenize_hanzi(self, s):
|
40 |
+
"""将文本分割为汉字、英文单词和标点符号的混合token"""
|
41 |
+
pattern = re.compile(
|
42 |
+
r'([\u4e00-\u9fff\u3000-\u303f\uff00-\uffef]|[a-zA-Z.,!?;:\'"]+|\d+|\s)'
|
43 |
+
)
|
44 |
+
|
45 |
+
tokens = []
|
46 |
+
for token in pattern.finditer(s):
|
47 |
+
if token.group().strip(): # 忽略纯空格
|
48 |
+
tokens.append(token.group())
|
49 |
+
|
50 |
+
return tokens
|
51 |
+
|
52 |
+
def _build_vocab(self):
|
53 |
+
# 处理汉字词汇表
|
54 |
+
hanzi_counter = Counter()
|
55 |
+
pinyin_counter = Counter()
|
56 |
+
|
57 |
+
for _, row in self.data.iterrows():
|
58 |
+
# 使用新的tokenize方法处理汉字
|
59 |
+
hanzi_tokens = self._tokenize_hanzi(row['hanzi'])
|
60 |
+
hanzi_counter.update(hanzi_tokens)
|
61 |
+
|
62 |
+
# 拼音处理:按空格分割
|
63 |
+
pinyin_tokens = row['pinyin'].split()
|
64 |
+
pinyin_counter.update(pinyin_tokens)
|
65 |
+
|
66 |
+
# 添加特殊token
|
67 |
+
self.hanzi_vocab = ['<pad>', '<unk>', '<sos>', '<eos>'] + [char for char, _ in hanzi_counter.most_common()]
|
68 |
+
self.pinyin_vocab = ['<pad>', '<unk>', '<sos>', '<eos>'] + [pinyin for pinyin, _ in
|
69 |
+
pinyin_counter.most_common()]
|
70 |
+
|
71 |
+
# 创建token到id的映射
|
72 |
+
self.hanzi2idx = {char: idx for idx, char in enumerate(self.hanzi_vocab)}
|
73 |
+
self.idx2hanzi = {idx: char for idx, char in enumerate(self.hanzi_vocab)}
|
74 |
+
self.pinyin2idx = {pinyin: idx for idx, pinyin in enumerate(self.pinyin_vocab)}
|
75 |
+
self.idx2pinyin = {idx: pinyin for idx, pinyin in enumerate(self.pinyin_vocab)}
|
76 |
+
|
77 |
+
def __len__(self):
|
78 |
+
return len(self.data)
|
79 |
+
|
80 |
+
def __getitem__(self, idx):
|
81 |
+
hanzi_seq = self.data.iloc[idx]['hanzi']
|
82 |
+
pinyin_seq = self.data.iloc[idx]['pinyin']
|
83 |
+
|
84 |
+
# 将汉字序列转换为token id序列
|
85 |
+
hanzi_tokens = ['<sos>'] + self._tokenize_hanzi(hanzi_seq) + ['<eos>']
|
86 |
+
hanzi_ids = [self.hanzi2idx.get(token, self.hanzi2idx['<unk>']) for token in hanzi_tokens]
|
87 |
+
|
88 |
+
# 将拼音序列转换为token id序列
|
89 |
+
pinyin_tokens = ['<sos>'] + pinyin_seq.split() + ['<eos>']
|
90 |
+
pinyin_ids = [self.pinyin2idx.get(token, self.pinyin2idx['<unk>']) for token in pinyin_tokens]
|
91 |
+
|
92 |
+
# 截断或填充序列
|
93 |
+
hanzi_ids = hanzi_ids[:self.max_length]
|
94 |
+
pinyin_ids = pinyin_ids[:self.max_length]
|
95 |
+
|
96 |
+
hanzi_padding = [self.hanzi2idx['<pad>']] * (self.max_length - len(hanzi_ids))
|
97 |
+
pinyin_padding = [self.pinyin2idx['<pad>']] * (self.max_length - len(pinyin_ids))
|
98 |
+
|
99 |
+
hanzi_ids += hanzi_padding
|
100 |
+
pinyin_ids += pinyin_padding
|
101 |
+
|
102 |
+
return {
|
103 |
+
'pinyin': torch.tensor(pinyin_ids, dtype=torch.long),
|
104 |
+
'hanzi': torch.tensor(hanzi_ids, dtype=torch.long),
|
105 |
+
'hanzi_input': torch.tensor(hanzi_ids[:-1], dtype=torch.long),
|
106 |
+
'hanzi_target': torch.tensor(hanzi_ids[1:], dtype=torch.long)
|
107 |
+
}
|
108 |
+
|
109 |
+
|
110 |
+
# 2. Transformer模型定义
|
111 |
+
class TransformerModel(nn.Module):
|
112 |
+
def __init__(self, pinyin_vocab_size, hanzi_vocab_size, d_model=256, nhead=8, num_encoder_layers=6,
|
113 |
+
num_decoder_layers=6, dim_feedforward=1024, dropout=0.075):
|
114 |
+
super(TransformerModel, self).__init__()
|
115 |
+
|
116 |
+
self.d_model = d_model
|
117 |
+
|
118 |
+
# 拼音嵌入层
|
119 |
+
self.pinyin_embedding = nn.Embedding(pinyin_vocab_size, d_model)
|
120 |
+
# 汉字嵌入层
|
121 |
+
self.hanzi_embedding = nn.Embedding(hanzi_vocab_size, d_model)
|
122 |
+
|
123 |
+
# 位置编码
|
124 |
+
self.positional_encoding = PositionalEncoding(d_model, dropout)
|
125 |
+
|
126 |
+
# Transformer模型
|
127 |
+
self.transformer = nn.Transformer(
|
128 |
+
d_model=d_model,
|
129 |
+
nhead=nhead,
|
130 |
+
num_encoder_layers=num_encoder_layers,
|
131 |
+
num_decoder_layers=num_decoder_layers,
|
132 |
+
dim_feedforward=dim_feedforward,
|
133 |
+
dropout=dropout
|
134 |
+
)
|
135 |
+
|
136 |
+
# 输出层
|
137 |
+
self.fc_out = nn.Linear(d_model, hanzi_vocab_size)
|
138 |
+
|
139 |
+
def forward(self, pinyin, hanzi_input):
|
140 |
+
# 嵌入层
|
141 |
+
pinyin_embedded = self.pinyin_embedding(pinyin) * np.sqrt(self.d_model)
|
142 |
+
hanzi_embedded = self.hanzi_embedding(hanzi_input) * np.sqrt(self.d_model)
|
143 |
+
|
144 |
+
# 位置编码
|
145 |
+
pinyin_embedded = self.positional_encoding(pinyin_embedded)
|
146 |
+
hanzi_embedded = self.positional_encoding(hanzi_embedded)
|
147 |
+
|
148 |
+
# 调整维度顺序:(seq_len, batch_size, d_model)
|
149 |
+
pinyin_embedded = pinyin_embedded.permute(1, 0, 2)
|
150 |
+
hanzi_embedded = hanzi_embedded.permute(1, 0, 2)
|
151 |
+
|
152 |
+
# 创建mask
|
153 |
+
src_mask = self._generate_square_subsequent_mask(pinyin_embedded.size(0)).to(device)
|
154 |
+
tgt_mask = self._generate_square_subsequent_mask(hanzi_embedded.size(0)).to(device)
|
155 |
+
|
156 |
+
# Transformer前向传播
|
157 |
+
output = self.transformer(
|
158 |
+
src=pinyin_embedded,
|
159 |
+
tgt=hanzi_embedded,
|
160 |
+
src_key_padding_mask=self._create_padding_mask(pinyin),
|
161 |
+
tgt_key_padding_mask=self._create_padding_mask(hanzi_input),
|
162 |
+
memory_key_padding_mask=self._create_padding_mask(pinyin),
|
163 |
+
src_mask=src_mask,
|
164 |
+
tgt_mask=tgt_mask
|
165 |
+
)
|
166 |
+
|
167 |
+
# 输出层,输出前将维度调整回(batch_size, seq_len, d_model)
|
168 |
+
output = output.permute(1, 0, 2)
|
169 |
+
output = self.fc_out(output)
|
170 |
+
|
171 |
+
return output
|
172 |
+
|
173 |
+
def _generate_square_subsequent_mask(self, sz):
|
174 |
+
return torch.triu(torch.full((sz, sz), float('-inf')), diagonal=1)
|
175 |
+
|
176 |
+
def _create_padding_mask(self, seq):
|
177 |
+
return seq == 0 # 假设<pad>的id是0
|
178 |
+
|
179 |
+
|
180 |
+
# 3. 位置编码定义
|
181 |
+
class PositionalEncoding(nn.Module):
|
182 |
+
def __init__(self, d_model, dropout=0.1, max_len=512):
|
183 |
+
super(PositionalEncoding, self).__init__()
|
184 |
+
self.dropout = nn.Dropout(p=dropout)
|
185 |
+
|
186 |
+
position = torch.arange(max_len).unsqueeze(1)
|
187 |
+
div_term = torch.exp(torch.arange(0, d_model, 2) * (-np.log(10000.0) / d_model))
|
188 |
+
pe = torch.zeros(max_len, 1, d_model)
|
189 |
+
pe[:, 0, 0::2] = torch.sin(position * div_term)
|
190 |
+
pe[:, 0, 1::2] = torch.cos(position * div_term)
|
191 |
+
self.register_buffer('pe', pe)
|
192 |
+
|
193 |
+
def forward(self, x):
|
194 |
+
x = x + self.pe[:x.size(0)]
|
195 |
+
return self.dropout(x)
|
196 |
+
|
197 |
+
|
198 |
+
# 4. 建模(包装器定义)
|
199 |
+
class PinyinHanziTransformer:
|
200 |
+
def __init__(self, model=None, dataset=None, config=None):
|
201 |
+
self.model = model
|
202 |
+
self.dataset = dataset
|
203 |
+
self.config = config or {}
|
204 |
+
|
205 |
+
def save(self, filepath):
|
206 |
+
"""保存整个模型、词汇表和配置到单个文件"""
|
207 |
+
save_data = {
|
208 |
+
'model_state_dict': self.model.state_dict(),
|
209 |
+
'hanzi_vocab': self.dataset.hanzi_vocab,
|
210 |
+
'pinyin_vocab': self.dataset.pinyin_vocab,
|
211 |
+
'hanzi2idx': self.dataset.hanzi2idx,
|
212 |
+
'idx2hanzi': self.dataset.idx2hanzi,
|
213 |
+
'pinyin2idx': self.dataset.pinyin2idx,
|
214 |
+
'idx2pinyin': self.dataset.idx2pinyin,
|
215 |
+
'max_length': self.dataset.max_length,
|
216 |
+
'config': self.config
|
217 |
+
}
|
218 |
+
torch.save(save_data, filepath)
|
219 |
+
|
220 |
+
@classmethod
|
221 |
+
def load(cls, filepath, device='cpu'):
|
222 |
+
"""从文件加载整个模型"""
|
223 |
+
save_data = torch.load(filepath, map_location=device)
|
224 |
+
|
225 |
+
# 创建虚拟数据集对象以保存词汇表信息
|
226 |
+
class DummyDataset:
|
227 |
+
pass
|
228 |
+
|
229 |
+
dataset = DummyDataset()
|
230 |
+
dataset.hanzi_vocab = save_data['hanzi_vocab']
|
231 |
+
dataset.pinyin_vocab = save_data['pinyin_vocab']
|
232 |
+
dataset.hanzi2idx = save_data['hanzi2idx']
|
233 |
+
dataset.idx2hanzi = save_data['idx2hanzi']
|
234 |
+
dataset.pinyin2idx = save_data['pinyin2idx']
|
235 |
+
dataset.idx2pinyin = save_data['idx2pinyin']
|
236 |
+
dataset.max_length = save_data['max_length']
|
237 |
+
|
238 |
+
# 初始化模型
|
239 |
+
config = save_data['config']
|
240 |
+
model = TransformerModel(
|
241 |
+
pinyin_vocab_size=len(dataset.pinyin_vocab),
|
242 |
+
hanzi_vocab_size=len(dataset.hanzi_vocab),
|
243 |
+
**config
|
244 |
+
).to(device)
|
245 |
+
model.load_state_dict(save_data['model_state_dict'])
|
246 |
+
|
247 |
+
return cls(model=model, dataset=dataset, config=config)
|
248 |
+
|
249 |
+
@staticmethod
|
250 |
+
def top_k_sampling(logits, k=5, temperature=1.0):
|
251 |
+
logits = logits / temperature
|
252 |
+
probs = F.softmax(logits, dim=-1) # shape: (1, vocab_size)
|
253 |
+
|
254 |
+
topk_probs, topk_indices = torch.topk(probs, k, dim=-1) # shape: (1, k)
|
255 |
+
|
256 |
+
# 从 top-k 中随机采样一个 index(在 top k 里的位置)
|
257 |
+
sampled_index = torch.multinomial(topk_probs, num_samples=1) # shape: (1, 1)
|
258 |
+
|
259 |
+
# 找到对应的真正 vocab 索引
|
260 |
+
next_token = torch.gather(topk_indices, dim=1, index=sampled_index) # shape: (1, 1)
|
261 |
+
|
262 |
+
# Instead of directly using .item(), ensure we're handling the tensor correctly
|
263 |
+
return next_token.squeeze().item() # .squeeze() to get rid of the extra dimension and then .item()
|
264 |
+
|
265 |
+
def predict(self, pinyin_seq, max_length=None, k=3, temperature=1.0):
|
266 |
+
"""预测函数(使用top-k采样)"""
|
267 |
+
self.model.eval()
|
268 |
+
max_length = max_length or self.dataset.max_length
|
269 |
+
|
270 |
+
# 拼音转ID
|
271 |
+
pinyin_tokens = ['<sos>'] + pinyin_seq.split() + ['<eos>']
|
272 |
+
pinyin_ids = [self.dataset.pinyin2idx.get(token, self.dataset.pinyin2idx['<unk>']) for token in pinyin_tokens]
|
273 |
+
pinyin_ids = pinyin_ids[:max_length]
|
274 |
+
pinyin_ids += [self.dataset.pinyin2idx['<pad>']] * (max_length - len(pinyin_ids))
|
275 |
+
pinyin_tensor = torch.tensor(pinyin_ids, dtype=torch.long).unsqueeze(0).to(self.model.device)
|
276 |
+
|
277 |
+
# 初始化汉字序列
|
278 |
+
hanzi_ids = [self.dataset.hanzi2idx['<sos>']]
|
279 |
+
|
280 |
+
for i in range(max_length - 1):
|
281 |
+
hanzi_tensor = torch.tensor(hanzi_ids, dtype=torch.long).unsqueeze(0).to(self.model.device)
|
282 |
+
|
283 |
+
with torch.no_grad():
|
284 |
+
output = self.model(pinyin_tensor, hanzi_tensor) # (1, seq_len, vocab_size)
|
285 |
+
logits = output[:, -1, :] # 取最后一个位置的logits,(1, vocab_size)
|
286 |
+
|
287 |
+
# 使用top-k采样
|
288 |
+
next_token = PinyinHanziTransformer.top_k_sampling(logits, k=k, temperature=temperature)
|
289 |
+
hanzi_ids.append(next_token)
|
290 |
+
|
291 |
+
if next_token == self.dataset.hanzi2idx['<eos>']:
|
292 |
+
break
|
293 |
+
|
294 |
+
# 转换为汉字序列
|
295 |
+
hanzi_seq = [self.dataset.idx2hanzi[idx] for idx in hanzi_ids[1:-1]] # 去掉<sos>和可能的<eos>
|
296 |
+
return ''.join(hanzi_seq)
|
297 |
+
|
298 |
+
# 在TransformerModel类中添加device属性
|
299 |
+
@property
|
300 |
+
def device(self):
|
301 |
+
return next(self.parameters()).device
|
302 |
+
|
303 |
+
TransformerModel.device = device
|
304 |
+
|
305 |
+
|
306 |
+
# 5. 训练函数定义
|
307 |
+
def train_model(model, dataloader, optimizer, criterion, epoch):
|
308 |
+
model.train()
|
309 |
+
total_loss = 0
|
310 |
+
progress_bar = tqdm(dataloader, desc=f"Epoch {epoch}")
|
311 |
+
|
312 |
+
for batch in progress_bar:
|
313 |
+
pinyin = batch['pinyin'].to(device)
|
314 |
+
hanzi_input = batch['hanzi_input'].to(device)
|
315 |
+
hanzi_target = batch['hanzi_target'].to(device)
|
316 |
+
|
317 |
+
# 前向传播
|
318 |
+
output = model(pinyin, hanzi_input)
|
319 |
+
|
320 |
+
# 计算损失
|
321 |
+
loss = criterion(output.reshape(-1, output.size(-1)), hanzi_target.reshape(-1))
|
322 |
+
|
323 |
+
# 反向传播
|
324 |
+
optimizer.zero_grad()
|
325 |
+
loss.backward()
|
326 |
+
optimizer.step()
|
327 |
+
|
328 |
+
total_loss += loss.item()
|
329 |
+
progress_bar.set_postfix(loss=f"{loss.item():.3f}")
|
330 |
+
|
331 |
+
return total_loss / len(dataloader)
|
332 |
+
|
333 |
+
|
334 |
+
# 4. 评估函数定义
|
335 |
+
def evaluate_model(model, dataloader, criterion):
|
336 |
+
model.eval()
|
337 |
+
total_loss = 0
|
338 |
+
|
339 |
+
with torch.no_grad():
|
340 |
+
for batch in tqdm(dataloader, desc="Evaluating"):
|
341 |
+
pinyin = batch['pinyin'].to(device)
|
342 |
+
hanzi_input = batch['hanzi_input'].to(device)
|
343 |
+
hanzi_target = batch['hanzi_target'].to(device)
|
344 |
+
|
345 |
+
output = model(pinyin, hanzi_input)
|
346 |
+
loss = criterion(output.reshape(-1, output.size(-1)), hanzi_target.reshape(-1))
|
347 |
+
total_loss += loss.item()
|
348 |
+
|
349 |
+
return total_loss / len(dataloader)
|
350 |
+
|
351 |
+
|
352 |
+
# 6. 模型训练主函数
|
353 |
+
def train_main():
|
354 |
+
# 参数设置 训练前请调整这些参数
|
355 |
+
batch_size = 256 # 批大小
|
356 |
+
num_epochs = 33 # 迭代轮数
|
357 |
+
learning_rate = 0.0001 # 学习率
|
358 |
+
max_length = 14 # 截断长度
|
359 |
+
train_test_ratio = 0.95 # 数据集中训练集与测试集数据量比例
|
360 |
+
dataset_filepath = 'pinyin2hanzi.csv' # 数据集CSV文件路径
|
361 |
+
model_config = { # 模型配置参数
|
362 |
+
'd_model': 512, # 词嵌入维度
|
363 |
+
'nhead': 16, # 多头注意力层注意力头数
|
364 |
+
'num_encoder_layers': 8, # Transformer编码器块数
|
365 |
+
'num_decoder_layers': 6, # Transformer解码器块数
|
366 |
+
'dim_feedforward': 1024, # Transformer前馈层维度
|
367 |
+
'dropout': 0.07 # dropout比例
|
368 |
+
}
|
369 |
+
|
370 |
+
# 加载数据集
|
371 |
+
dataset = PinyinHanziDataset(dataset_filepath, max_length=max_length)
|
372 |
+
|
373 |
+
# 分割训练集和测试集
|
374 |
+
train_size = int(train_test_ratio * len(dataset))
|
375 |
+
test_size = len(dataset) - train_size
|
376 |
+
train_dataset, test_dataset = torch.utils.data.random_split(dataset, [train_size, test_size])
|
377 |
+
|
378 |
+
# 创建DataLoader
|
379 |
+
train_loader = DataLoader(train_dataset, batch_size=batch_size, shuffle=True)
|
380 |
+
test_loader = DataLoader(test_dataset, batch_size=batch_size, shuffle=False)
|
381 |
+
|
382 |
+
# 初始化模型包装器
|
383 |
+
transformer = PinyinHanziTransformer(
|
384 |
+
model=TransformerModel(
|
385 |
+
pinyin_vocab_size=len(dataset.pinyin_vocab),
|
386 |
+
hanzi_vocab_size=len(dataset.hanzi_vocab),
|
387 |
+
**model_config
|
388 |
+
).to(device),
|
389 |
+
dataset=dataset,
|
390 |
+
config=model_config
|
391 |
+
)
|
392 |
+
|
393 |
+
# 损失函数和优化器
|
394 |
+
criterion = nn.CrossEntropyLoss(ignore_index=dataset.hanzi2idx['<pad>'])
|
395 |
+
optimizer = optim.Adam(transformer.model.parameters(), lr=learning_rate)
|
396 |
+
scheduler = torch.optim.lr_scheduler.StepLR(optimizer, step_size=45, gamma=0.41)
|
397 |
+
|
398 |
+
# 训练循环
|
399 |
+
train_losses = []
|
400 |
+
test_losses = []
|
401 |
+
|
402 |
+
for epoch in range(1, num_epochs + 1):
|
403 |
+
train_loss = train_model(transformer.model, train_loader, optimizer, criterion, epoch)
|
404 |
+
test_loss = evaluate_model(transformer.model, test_loader, criterion)
|
405 |
+
|
406 |
+
train_losses.append(train_loss)
|
407 |
+
test_losses.append(test_loss)
|
408 |
+
|
409 |
+
scheduler.step()
|
410 |
+
print(f"Epoch {epoch}: Train Loss = {train_loss:.4f}, Test Loss = {test_loss:.4f}")
|
411 |
+
|
412 |
+
# 保存整个模型到当前目录(包括词汇表等信息)
|
413 |
+
# if epoch % 7 == 0 or epoch == num_epochs:
|
414 |
+
transformer.save(f"pinyin2hanzi_transformer_epoch{epoch}.pth")
|
415 |
+
|
416 |
+
# 绘制损失曲线
|
417 |
+
plt.plot(train_losses, label='Train Loss')
|
418 |
+
plt.plot(test_losses, label='Test Loss')
|
419 |
+
plt.xlabel('Epoch')
|
420 |
+
plt.ylabel('Loss')
|
421 |
+
plt.legend()
|
422 |
+
plt.savefig('loss_curve.png')
|
423 |
+
|
424 |
+
|
425 |
+
# 7. 模型推理主函数
|
426 |
+
def use_main():
|
427 |
+
transformer = PinyinHanziTransformer.load("pinyin2hanzi_transformer.pth", device=str(device))
|
428 |
+
result = transformer.predict("hong2 yan2 bo2 ming4") # 应当输出:红颜薄命
|
429 |
+
print("预测结果: ", result)
|
430 |
+
|
431 |
+
|
432 |
+
if __name__ == "__main__":
|
433 |
+
# train_main() # 解除注释、修改参数,运行代码以开始训练
|
434 |
+
use_main() # 解除注释以使用模型
|