Duyu commited on
Commit
18609ed
·
verified ·
1 Parent(s): 55d019d

上传预训练模型文件及代码

Browse files
Files changed (2) hide show
  1. pinyin2hanzi_transformer.pth +3 -0
  2. run.py +434 -0
pinyin2hanzi_transformer.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:a7d0c8e588e83f1d9b8dc9c961cca4410a5b20f6f6d912f854553ca2a0234b7b
3
+ size 250775353
run.py ADDED
@@ -0,0 +1,434 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ """
2
+ - Copyright (c) 2025 DuYu (No.202103180009, [email protected]), Faculty of Computer Science and Technology, Qilu University of Technology (Shandong Academy of Sciences).
3
+ - 基于Transformer的汉语拼音序列转汉字序列模型 训练与测试代码
4
+ - 文件名:run.py
5
+ """
6
+ import re
7
+ import warnings
8
+ import numpy as np
9
+ import pandas as pd
10
+ import matplotlib.pyplot as plt
11
+ import torch
12
+ import torch.nn as nn
13
+ import torch.optim as optim
14
+ import torch.nn.functional as F
15
+ from torch.utils.data import Dataset, DataLoader
16
+ from tqdm import tqdm
17
+ from collections import Counter
18
+
19
+ warnings.filterwarnings("ignore") # 全局禁用警告信息,开发时可去除
20
+
21
+ # 设置随机种子保证可重复性
22
+ torch.manual_seed(525200)
23
+ np.random.seed(40004004)
24
+
25
+ # 检查是否有可用的GPU
26
+ device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
27
+ print(f"Using device: {device}")
28
+
29
+
30
+ # 1. 数据读取与预处理
31
+ class PinyinHanziDataset(Dataset):
32
+ def __init__(self, csv_file, max_length=15):
33
+ self.data = pd.read_csv(csv_file, header=None, names=['hanzi', 'pinyin'])
34
+ self.max_length = max_length
35
+
36
+ # 构建词汇表
37
+ self._build_vocab()
38
+
39
+ def _tokenize_hanzi(self, s):
40
+ """将文本分割为汉字、英文单词和标点符号的混合token"""
41
+ pattern = re.compile(
42
+ r'([\u4e00-\u9fff\u3000-\u303f\uff00-\uffef]|[a-zA-Z.,!?;:\'"]+|\d+|\s)'
43
+ )
44
+
45
+ tokens = []
46
+ for token in pattern.finditer(s):
47
+ if token.group().strip(): # 忽略纯空格
48
+ tokens.append(token.group())
49
+
50
+ return tokens
51
+
52
+ def _build_vocab(self):
53
+ # 处理汉字词汇表
54
+ hanzi_counter = Counter()
55
+ pinyin_counter = Counter()
56
+
57
+ for _, row in self.data.iterrows():
58
+ # 使用新的tokenize方法处理汉字
59
+ hanzi_tokens = self._tokenize_hanzi(row['hanzi'])
60
+ hanzi_counter.update(hanzi_tokens)
61
+
62
+ # 拼音处理:按空格分割
63
+ pinyin_tokens = row['pinyin'].split()
64
+ pinyin_counter.update(pinyin_tokens)
65
+
66
+ # 添加特殊token
67
+ self.hanzi_vocab = ['<pad>', '<unk>', '<sos>', '<eos>'] + [char for char, _ in hanzi_counter.most_common()]
68
+ self.pinyin_vocab = ['<pad>', '<unk>', '<sos>', '<eos>'] + [pinyin for pinyin, _ in
69
+ pinyin_counter.most_common()]
70
+
71
+ # 创建token到id的映射
72
+ self.hanzi2idx = {char: idx for idx, char in enumerate(self.hanzi_vocab)}
73
+ self.idx2hanzi = {idx: char for idx, char in enumerate(self.hanzi_vocab)}
74
+ self.pinyin2idx = {pinyin: idx for idx, pinyin in enumerate(self.pinyin_vocab)}
75
+ self.idx2pinyin = {idx: pinyin for idx, pinyin in enumerate(self.pinyin_vocab)}
76
+
77
+ def __len__(self):
78
+ return len(self.data)
79
+
80
+ def __getitem__(self, idx):
81
+ hanzi_seq = self.data.iloc[idx]['hanzi']
82
+ pinyin_seq = self.data.iloc[idx]['pinyin']
83
+
84
+ # 将汉字序列转换为token id序列
85
+ hanzi_tokens = ['<sos>'] + self._tokenize_hanzi(hanzi_seq) + ['<eos>']
86
+ hanzi_ids = [self.hanzi2idx.get(token, self.hanzi2idx['<unk>']) for token in hanzi_tokens]
87
+
88
+ # 将拼音序列转换为token id序列
89
+ pinyin_tokens = ['<sos>'] + pinyin_seq.split() + ['<eos>']
90
+ pinyin_ids = [self.pinyin2idx.get(token, self.pinyin2idx['<unk>']) for token in pinyin_tokens]
91
+
92
+ # 截断或填充序列
93
+ hanzi_ids = hanzi_ids[:self.max_length]
94
+ pinyin_ids = pinyin_ids[:self.max_length]
95
+
96
+ hanzi_padding = [self.hanzi2idx['<pad>']] * (self.max_length - len(hanzi_ids))
97
+ pinyin_padding = [self.pinyin2idx['<pad>']] * (self.max_length - len(pinyin_ids))
98
+
99
+ hanzi_ids += hanzi_padding
100
+ pinyin_ids += pinyin_padding
101
+
102
+ return {
103
+ 'pinyin': torch.tensor(pinyin_ids, dtype=torch.long),
104
+ 'hanzi': torch.tensor(hanzi_ids, dtype=torch.long),
105
+ 'hanzi_input': torch.tensor(hanzi_ids[:-1], dtype=torch.long),
106
+ 'hanzi_target': torch.tensor(hanzi_ids[1:], dtype=torch.long)
107
+ }
108
+
109
+
110
+ # 2. Transformer模型定义
111
+ class TransformerModel(nn.Module):
112
+ def __init__(self, pinyin_vocab_size, hanzi_vocab_size, d_model=256, nhead=8, num_encoder_layers=6,
113
+ num_decoder_layers=6, dim_feedforward=1024, dropout=0.075):
114
+ super(TransformerModel, self).__init__()
115
+
116
+ self.d_model = d_model
117
+
118
+ # 拼音嵌入层
119
+ self.pinyin_embedding = nn.Embedding(pinyin_vocab_size, d_model)
120
+ # 汉字嵌入层
121
+ self.hanzi_embedding = nn.Embedding(hanzi_vocab_size, d_model)
122
+
123
+ # 位置编码
124
+ self.positional_encoding = PositionalEncoding(d_model, dropout)
125
+
126
+ # Transformer模型
127
+ self.transformer = nn.Transformer(
128
+ d_model=d_model,
129
+ nhead=nhead,
130
+ num_encoder_layers=num_encoder_layers,
131
+ num_decoder_layers=num_decoder_layers,
132
+ dim_feedforward=dim_feedforward,
133
+ dropout=dropout
134
+ )
135
+
136
+ # 输出层
137
+ self.fc_out = nn.Linear(d_model, hanzi_vocab_size)
138
+
139
+ def forward(self, pinyin, hanzi_input):
140
+ # 嵌入层
141
+ pinyin_embedded = self.pinyin_embedding(pinyin) * np.sqrt(self.d_model)
142
+ hanzi_embedded = self.hanzi_embedding(hanzi_input) * np.sqrt(self.d_model)
143
+
144
+ # 位置编码
145
+ pinyin_embedded = self.positional_encoding(pinyin_embedded)
146
+ hanzi_embedded = self.positional_encoding(hanzi_embedded)
147
+
148
+ # 调整维度顺序:(seq_len, batch_size, d_model)
149
+ pinyin_embedded = pinyin_embedded.permute(1, 0, 2)
150
+ hanzi_embedded = hanzi_embedded.permute(1, 0, 2)
151
+
152
+ # 创建mask
153
+ src_mask = self._generate_square_subsequent_mask(pinyin_embedded.size(0)).to(device)
154
+ tgt_mask = self._generate_square_subsequent_mask(hanzi_embedded.size(0)).to(device)
155
+
156
+ # Transformer前向传播
157
+ output = self.transformer(
158
+ src=pinyin_embedded,
159
+ tgt=hanzi_embedded,
160
+ src_key_padding_mask=self._create_padding_mask(pinyin),
161
+ tgt_key_padding_mask=self._create_padding_mask(hanzi_input),
162
+ memory_key_padding_mask=self._create_padding_mask(pinyin),
163
+ src_mask=src_mask,
164
+ tgt_mask=tgt_mask
165
+ )
166
+
167
+ # 输出层,输出前将维度调整回(batch_size, seq_len, d_model)
168
+ output = output.permute(1, 0, 2)
169
+ output = self.fc_out(output)
170
+
171
+ return output
172
+
173
+ def _generate_square_subsequent_mask(self, sz):
174
+ return torch.triu(torch.full((sz, sz), float('-inf')), diagonal=1)
175
+
176
+ def _create_padding_mask(self, seq):
177
+ return seq == 0 # 假设<pad>的id是0
178
+
179
+
180
+ # 3. 位置编码定义
181
+ class PositionalEncoding(nn.Module):
182
+ def __init__(self, d_model, dropout=0.1, max_len=512):
183
+ super(PositionalEncoding, self).__init__()
184
+ self.dropout = nn.Dropout(p=dropout)
185
+
186
+ position = torch.arange(max_len).unsqueeze(1)
187
+ div_term = torch.exp(torch.arange(0, d_model, 2) * (-np.log(10000.0) / d_model))
188
+ pe = torch.zeros(max_len, 1, d_model)
189
+ pe[:, 0, 0::2] = torch.sin(position * div_term)
190
+ pe[:, 0, 1::2] = torch.cos(position * div_term)
191
+ self.register_buffer('pe', pe)
192
+
193
+ def forward(self, x):
194
+ x = x + self.pe[:x.size(0)]
195
+ return self.dropout(x)
196
+
197
+
198
+ # 4. 建模(包装器定义)
199
+ class PinyinHanziTransformer:
200
+ def __init__(self, model=None, dataset=None, config=None):
201
+ self.model = model
202
+ self.dataset = dataset
203
+ self.config = config or {}
204
+
205
+ def save(self, filepath):
206
+ """保存整个模型、词汇表和配置到单个文件"""
207
+ save_data = {
208
+ 'model_state_dict': self.model.state_dict(),
209
+ 'hanzi_vocab': self.dataset.hanzi_vocab,
210
+ 'pinyin_vocab': self.dataset.pinyin_vocab,
211
+ 'hanzi2idx': self.dataset.hanzi2idx,
212
+ 'idx2hanzi': self.dataset.idx2hanzi,
213
+ 'pinyin2idx': self.dataset.pinyin2idx,
214
+ 'idx2pinyin': self.dataset.idx2pinyin,
215
+ 'max_length': self.dataset.max_length,
216
+ 'config': self.config
217
+ }
218
+ torch.save(save_data, filepath)
219
+
220
+ @classmethod
221
+ def load(cls, filepath, device='cpu'):
222
+ """从文件加载整个模型"""
223
+ save_data = torch.load(filepath, map_location=device)
224
+
225
+ # 创建虚拟数据集对象以保存词汇表信息
226
+ class DummyDataset:
227
+ pass
228
+
229
+ dataset = DummyDataset()
230
+ dataset.hanzi_vocab = save_data['hanzi_vocab']
231
+ dataset.pinyin_vocab = save_data['pinyin_vocab']
232
+ dataset.hanzi2idx = save_data['hanzi2idx']
233
+ dataset.idx2hanzi = save_data['idx2hanzi']
234
+ dataset.pinyin2idx = save_data['pinyin2idx']
235
+ dataset.idx2pinyin = save_data['idx2pinyin']
236
+ dataset.max_length = save_data['max_length']
237
+
238
+ # 初始化模型
239
+ config = save_data['config']
240
+ model = TransformerModel(
241
+ pinyin_vocab_size=len(dataset.pinyin_vocab),
242
+ hanzi_vocab_size=len(dataset.hanzi_vocab),
243
+ **config
244
+ ).to(device)
245
+ model.load_state_dict(save_data['model_state_dict'])
246
+
247
+ return cls(model=model, dataset=dataset, config=config)
248
+
249
+ @staticmethod
250
+ def top_k_sampling(logits, k=5, temperature=1.0):
251
+ logits = logits / temperature
252
+ probs = F.softmax(logits, dim=-1) # shape: (1, vocab_size)
253
+
254
+ topk_probs, topk_indices = torch.topk(probs, k, dim=-1) # shape: (1, k)
255
+
256
+ # 从 top-k 中随机采样一个 index(在 top k 里的位置)
257
+ sampled_index = torch.multinomial(topk_probs, num_samples=1) # shape: (1, 1)
258
+
259
+ # 找到对应的真正 vocab 索引
260
+ next_token = torch.gather(topk_indices, dim=1, index=sampled_index) # shape: (1, 1)
261
+
262
+ # Instead of directly using .item(), ensure we're handling the tensor correctly
263
+ return next_token.squeeze().item() # .squeeze() to get rid of the extra dimension and then .item()
264
+
265
+ def predict(self, pinyin_seq, max_length=None, k=3, temperature=1.0):
266
+ """预测函数(使用top-k采样)"""
267
+ self.model.eval()
268
+ max_length = max_length or self.dataset.max_length
269
+
270
+ # 拼音转ID
271
+ pinyin_tokens = ['<sos>'] + pinyin_seq.split() + ['<eos>']
272
+ pinyin_ids = [self.dataset.pinyin2idx.get(token, self.dataset.pinyin2idx['<unk>']) for token in pinyin_tokens]
273
+ pinyin_ids = pinyin_ids[:max_length]
274
+ pinyin_ids += [self.dataset.pinyin2idx['<pad>']] * (max_length - len(pinyin_ids))
275
+ pinyin_tensor = torch.tensor(pinyin_ids, dtype=torch.long).unsqueeze(0).to(self.model.device)
276
+
277
+ # 初始化汉字序列
278
+ hanzi_ids = [self.dataset.hanzi2idx['<sos>']]
279
+
280
+ for i in range(max_length - 1):
281
+ hanzi_tensor = torch.tensor(hanzi_ids, dtype=torch.long).unsqueeze(0).to(self.model.device)
282
+
283
+ with torch.no_grad():
284
+ output = self.model(pinyin_tensor, hanzi_tensor) # (1, seq_len, vocab_size)
285
+ logits = output[:, -1, :] # 取最后一个位置的logits,(1, vocab_size)
286
+
287
+ # 使用top-k采样
288
+ next_token = PinyinHanziTransformer.top_k_sampling(logits, k=k, temperature=temperature)
289
+ hanzi_ids.append(next_token)
290
+
291
+ if next_token == self.dataset.hanzi2idx['<eos>']:
292
+ break
293
+
294
+ # 转换为汉字序列
295
+ hanzi_seq = [self.dataset.idx2hanzi[idx] for idx in hanzi_ids[1:-1]] # 去掉<sos>和可能的<eos>
296
+ return ''.join(hanzi_seq)
297
+
298
+ # 在TransformerModel类中添加device属性
299
+ @property
300
+ def device(self):
301
+ return next(self.parameters()).device
302
+
303
+ TransformerModel.device = device
304
+
305
+
306
+ # 5. 训练函数定义
307
+ def train_model(model, dataloader, optimizer, criterion, epoch):
308
+ model.train()
309
+ total_loss = 0
310
+ progress_bar = tqdm(dataloader, desc=f"Epoch {epoch}")
311
+
312
+ for batch in progress_bar:
313
+ pinyin = batch['pinyin'].to(device)
314
+ hanzi_input = batch['hanzi_input'].to(device)
315
+ hanzi_target = batch['hanzi_target'].to(device)
316
+
317
+ # 前向传播
318
+ output = model(pinyin, hanzi_input)
319
+
320
+ # 计算损失
321
+ loss = criterion(output.reshape(-1, output.size(-1)), hanzi_target.reshape(-1))
322
+
323
+ # 反向传播
324
+ optimizer.zero_grad()
325
+ loss.backward()
326
+ optimizer.step()
327
+
328
+ total_loss += loss.item()
329
+ progress_bar.set_postfix(loss=f"{loss.item():.3f}")
330
+
331
+ return total_loss / len(dataloader)
332
+
333
+
334
+ # 4. 评估函数定义
335
+ def evaluate_model(model, dataloader, criterion):
336
+ model.eval()
337
+ total_loss = 0
338
+
339
+ with torch.no_grad():
340
+ for batch in tqdm(dataloader, desc="Evaluating"):
341
+ pinyin = batch['pinyin'].to(device)
342
+ hanzi_input = batch['hanzi_input'].to(device)
343
+ hanzi_target = batch['hanzi_target'].to(device)
344
+
345
+ output = model(pinyin, hanzi_input)
346
+ loss = criterion(output.reshape(-1, output.size(-1)), hanzi_target.reshape(-1))
347
+ total_loss += loss.item()
348
+
349
+ return total_loss / len(dataloader)
350
+
351
+
352
+ # 6. 模型训练主函数
353
+ def train_main():
354
+ # 参数设置 训练前请调整这些参数
355
+ batch_size = 256 # 批大小
356
+ num_epochs = 33 # 迭代轮数
357
+ learning_rate = 0.0001 # 学习率
358
+ max_length = 14 # 截断长度
359
+ train_test_ratio = 0.95 # 数据集中训练集与测试集数据量比例
360
+ dataset_filepath = 'pinyin2hanzi.csv' # 数据集CSV文件路径
361
+ model_config = { # 模型配置参数
362
+ 'd_model': 512, # 词嵌入维度
363
+ 'nhead': 16, # 多头注意力层注意力头数
364
+ 'num_encoder_layers': 8, # Transformer编码器块数
365
+ 'num_decoder_layers': 6, # Transformer解码器块数
366
+ 'dim_feedforward': 1024, # Transformer前馈层维度
367
+ 'dropout': 0.07 # dropout比例
368
+ }
369
+
370
+ # 加载数据集
371
+ dataset = PinyinHanziDataset(dataset_filepath, max_length=max_length)
372
+
373
+ # 分割训练集和测试集
374
+ train_size = int(train_test_ratio * len(dataset))
375
+ test_size = len(dataset) - train_size
376
+ train_dataset, test_dataset = torch.utils.data.random_split(dataset, [train_size, test_size])
377
+
378
+ # 创建DataLoader
379
+ train_loader = DataLoader(train_dataset, batch_size=batch_size, shuffle=True)
380
+ test_loader = DataLoader(test_dataset, batch_size=batch_size, shuffle=False)
381
+
382
+ # 初始化模型包装器
383
+ transformer = PinyinHanziTransformer(
384
+ model=TransformerModel(
385
+ pinyin_vocab_size=len(dataset.pinyin_vocab),
386
+ hanzi_vocab_size=len(dataset.hanzi_vocab),
387
+ **model_config
388
+ ).to(device),
389
+ dataset=dataset,
390
+ config=model_config
391
+ )
392
+
393
+ # 损失函数和优化器
394
+ criterion = nn.CrossEntropyLoss(ignore_index=dataset.hanzi2idx['<pad>'])
395
+ optimizer = optim.Adam(transformer.model.parameters(), lr=learning_rate)
396
+ scheduler = torch.optim.lr_scheduler.StepLR(optimizer, step_size=45, gamma=0.41)
397
+
398
+ # 训练循环
399
+ train_losses = []
400
+ test_losses = []
401
+
402
+ for epoch in range(1, num_epochs + 1):
403
+ train_loss = train_model(transformer.model, train_loader, optimizer, criterion, epoch)
404
+ test_loss = evaluate_model(transformer.model, test_loader, criterion)
405
+
406
+ train_losses.append(train_loss)
407
+ test_losses.append(test_loss)
408
+
409
+ scheduler.step()
410
+ print(f"Epoch {epoch}: Train Loss = {train_loss:.4f}, Test Loss = {test_loss:.4f}")
411
+
412
+ # 保存整个模型到当前目录(包括词汇表等信息)
413
+ # if epoch % 7 == 0 or epoch == num_epochs:
414
+ transformer.save(f"pinyin2hanzi_transformer_epoch{epoch}.pth")
415
+
416
+ # 绘制损失曲线
417
+ plt.plot(train_losses, label='Train Loss')
418
+ plt.plot(test_losses, label='Test Loss')
419
+ plt.xlabel('Epoch')
420
+ plt.ylabel('Loss')
421
+ plt.legend()
422
+ plt.savefig('loss_curve.png')
423
+
424
+
425
+ # 7. 模型推理主函数
426
+ def use_main():
427
+ transformer = PinyinHanziTransformer.load("pinyin2hanzi_transformer.pth", device=str(device))
428
+ result = transformer.predict("hong2 yan2 bo2 ming4") # 应当输出:红颜薄命
429
+ print("预测结果: ", result)
430
+
431
+
432
+ if __name__ == "__main__":
433
+ # train_main() # 解除注释、修改参数,运行代码以开始训练
434
+ use_main() # 解除注释以使用模型