wav2vec2-base-Speech_Emotion_Recognition
This model is a fine-tuned version of facebook/wav2vec2-base.
It achieves the following results on the evaluation set:
- Loss: 0.7264
- Accuracy: 0.7539
- F1
- Weighted: 0.7514
- Micro: 0.7539
- Macro: 0.7529
- Recall
- Weighted: 0.7539
- Micro: 0.7539
- Macro: 0.7577
- Precision
- Weighted: 0.7565
- Micro: 0.7539
- Macro: 0.7558
Model description
This model predicts the emotion of the person speaking in the audio sample.
For more information on how it was created, check out the following link: https://github.com/DunnBC22/Vision_Audio_and_Multimodal_Projects/tree/main/Audio-Projects/Emotion%20Detection/Speech%20Emotion%20Detection
Intended uses & limitations
This model is intended to demonstrate my ability to solve a complex problem using technology.
Training and evaluation data
Dataset Source: https://www.kaggle.com/datasets/dmitrybabko/speech-emotion-recognition-en
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 3e-05
- train_batch_size: 32
- eval_batch_size: 32
- seed: 42
- gradient_accumulation_steps: 4
- total_train_batch_size: 128
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- lr_scheduler_warmup_ratio: 0.1
- num_epochs: 10
Training results
Training Loss | Epoch | Step | Validation Loss | Accuracy | Weighted F1 | Micro F1 | Macro F1 | Weighted Recall | Micro Recall | Macro Recall | Weighted Precision | Micro Precision | Macro Precision |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
1.5581 | 0.98 | 43 | 1.4046 | 0.4653 | 0.4080 | 0.4653 | 0.4174 | 0.4653 | 0.4653 | 0.4793 | 0.5008 | 0.4653 | 0.4974 |
1.5581 | 1.98 | 86 | 1.1566 | 0.5997 | 0.5836 | 0.5997 | 0.5871 | 0.5997 | 0.5997 | 0.6093 | 0.6248 | 0.5997 | 0.6209 |
1.5581 | 2.98 | 129 | 0.9733 | 0.6883 | 0.6845 | 0.6883 | 0.6860 | 0.6883 | 0.6883 | 0.6923 | 0.7012 | 0.6883 | 0.7009 |
1.5581 | 3.98 | 172 | 0.8313 | 0.7399 | 0.7392 | 0.7399 | 0.7409 | 0.7399 | 0.7399 | 0.7417 | 0.7415 | 0.7399 | 0.7432 |
1.5581 | 4.98 | 215 | 0.8708 | 0.7028 | 0.6963 | 0.7028 | 0.6970 | 0.7028 | 0.7028 | 0.7081 | 0.7148 | 0.7028 | 0.7114 |
1.5581 | 5.98 | 258 | 0.7969 | 0.7297 | 0.7267 | 0.7297 | 0.7277 | 0.7297 | 0.7297 | 0.7333 | 0.7393 | 0.7297 | 0.7382 |
1.5581 | 6.98 | 301 | 0.7349 | 0.7603 | 0.7613 | 0.7603 | 0.7631 | 0.7603 | 0.7603 | 0.7635 | 0.7699 | 0.7603 | 0.7702 |
1.5581 | 7.98 | 344 | 0.7714 | 0.7469 | 0.7444 | 0.7469 | 0.7456 | 0.7469 | 0.7469 | 0.7485 | 0.7554 | 0.7469 | 0.7563 |
1.5581 | 8.98 | 387 | 0.7183 | 0.7630 | 0.7615 | 0.7630 | 0.7631 | 0.7630 | 0.7630 | 0.7652 | 0.7626 | 0.7630 | 0.7637 |
1.5581 | 9.98 | 430 | 0.7264 | 0.7539 | 0.7514 | 0.7539 | 0.7529 | 0.7539 | 0.7539 | 0.7577 | 0.7565 | 0.7539 | 0.7558 |
Framework versions
- Transformers 4.26.1
- Pytorch 2.0.0+cu118
- Datasets 2.11.0
- Tokenizers 0.13.3
- Downloads last month
- 888
This model does not have enough activity to be deployed to Inference API (serverless) yet. Increase its social
visibility and check back later, or deploy to Inference Endpoints (dedicated)
instead.