DunnBC22's picture
Update README.md
2ecfbff
|
raw
history blame
4.21 kB
metadata
tags:
  - generated_from_trainer
model-index:
  - name: ibert-roberta-base-finetuned-WikiNeural
    results: []
datasets:
  - Babelscape/wikineural
language:
  - en
metrics:
  - accuracy
  - f1
  - recall
  - precision
  - seqeval
pipeline_tag: token-classification

ibert-roberta-base-finetuned-WikiNeural

This model is a fine-tuned version of kssteven/ibert-roberta-base.

It achieves the following results on the evaluation set:

  • Loss: 0.0878
  • Loc: {'precision': 0.9249338624338624, 'recall': 0.9393786733837112, 'f1': 0.9321003082562693, 'number': 5955}
  • Misc: {'precision': 0.8304751697034656, 'recall': 0.9185931634064414, 'f1': 0.8723144760296463, 'number': 5061}
  • Org: {'precision': 0.9283453237410072, 'recall': 0.9353435778486517, 'f1': 0.9318313113807049, 'number': 3449}
  • Per: {'precision': 0.9698098412076064, 'recall': 0.9495201535508637, 'f1': 0.9595577538551062, 'number': 5210}
  • Overall Precision: 0.9107
  • Overall Recall: 0.9360
  • Overall F1: 0.9232
  • Overall Accuracy: 0.9909

Model description

For more information on how it was created, check out the following link: https://github.com/DunnBC22/NLP_Projects/blob/main/Token%20Classification/Monolingual/WikiNeural%20-%20Transformer%20Comparison/POS%20Project%20with%20Wikineural%20Dataset%20-%20I-BERT%20Transformer.ipynb

Intended uses & limitations

This model is intended to demonstrate my ability to solve a complex problem using technology.

Training and evaluation data

Dataset Source: https://huggingface.co/datasets/Babelscape/wikineural

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 2e-05
  • train_batch_size: 16
  • eval_batch_size: 16
  • seed: 42
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • num_epochs: 2

Training results

Training Loss Epoch Step Validation Loss Loc Misc Org Per Overall Precision Overall Recall Overall F1 Overall Accuracy
0.1092 1.0 5795 0.0987 {'precision': 0.9124507227332457, 'recall': 0.9328295549958019, 'f1': 0.9225276093996512, 'number': 5955} {'precision': 0.8003130979300748, 'recall': 0.9091088717644734, 'f1': 0.8512488436632748, 'number': 5061} {'precision': 0.9142857142857143, 'recall': 0.9278051609162076, 'f1': 0.9209958267376601, 'number': 3449} {'precision': 0.9714229013693193, 'recall': 0.9395393474088292, 'f1': 0.9552151429407748, 'number': 5210} 0.8957 0.9276 0.9114 0.9890
0.0723 2.0 11590 0.0878 {'precision': 0.9249338624338624, 'recall': 0.9393786733837112, 'f1': 0.9321003082562693, 'number': 5955} {'precision': 0.8304751697034656, 'recall': 0.9185931634064414, 'f1': 0.8723144760296463, 'number': 5061} {'precision': 0.9283453237410072, 'recall': 0.9353435778486517, 'f1': 0.9318313113807049, 'number': 3449} {'precision': 0.9698098412076064, 'recall': 0.9495201535508637, 'f1': 0.9595577538551062, 'number': 5210} 0.9107 0.9360 0.9232 0.9909

Framework versions

  • Transformers 4.28.1
  • Pytorch 2.0.1
  • Datasets 2.13.0
  • Tokenizers 0.13.3