fnet-large-Financial_Sentiment_Analysis_v3
This model is a fine-tuned version of google/fnet-large. It achieves the following results on the evaluation set:
- Loss: 0.4741
- Accuracy: 0.8248
- F1
- Weighted: 0.8194
- Micro: 0.8248
- Macro: 0.7369
- Recall
- Weighted: 0.8248
- Micro: 0.8248
- Macro: 0.7269
- Precision
- Weighted: 0.8163
- Micro: 0.8248
- Macro: 0.7515
Model description
This is a sentiment analysis (text classification) model concerning comments about finances.
For more information on how it was created, check out the following link: https://github.com/DunnBC22/NLP_Projects/blob/main/Sentiment%20Analysis/Financial%20Sentiment%20Analysis/Financial_Sentiment_Analysis_v3.ipynb
Intended uses & limitations
This model is intended to demonstrate my ability to solve a complex problem using technology.
Training and evaluation data
Dataset Sources:
- https://www.kaggle.com/datasets/sbhatti/financial-sentiment-analysis
- https://www.kaggle.com/datasets/ankurzing/sentiment-analysis-for-financial-news
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 2e-05
- train_batch_size: 64
- eval_batch_size: 64
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 10
Training results
Training Loss | Epoch | Step | Validation Loss | Accuracy | Weighted F1 | Micro F1 | Macro F1 | Weighted Recall | Micro Recall | Macro Recall | Weighted Precision | Micro Precision | Macro Precision |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
0.6757 | 1.0 | 134 | 0.5890 | 0.5855 | 0.4739 | 0.5855 | 0.3628 | 0.5855 | 0.5855 | 0.4298 | 0.5912 | 0.5855 | 0.5210 |
0.4815 | 2.0 | 268 | 0.3994 | 0.7827 | 0.7789 | 0.7827 | 0.7156 | 0.7827 | 0.7827 | 0.7039 | 0.7878 | 0.7827 | 0.7388 |
0.314 | 3.0 | 402 | 0.3560 | 0.7991 | 0.7977 | 0.7991 | 0.7368 | 0.7991 | 0.7991 | 0.7252 | 0.8101 | 0.7991 | 0.7612 |
0.235 | 4.0 | 536 | 0.3278 | 0.8201 | 0.8217 | 0.8201 | 0.7549 | 0.8201 | 0.8201 | 0.7509 | 0.8274 | 0.8201 | 0.7631 |
0.1986 | 5.0 | 670 | 0.3574 | 0.8618 | 0.8655 | 0.8618 | 0.8209 | 0.8618 | 0.8618 | 0.8401 | 0.8723 | 0.8618 | 0.8084 |
0.1605 | 6.0 | 804 | 0.3886 | 0.7995 | 0.7803 | 0.7995 | 0.6588 | 0.7995 | 0.7995 | 0.6469 | 0.7781 | 0.7995 | 0.6987 |
0.1436 | 7.0 | 938 | 0.4040 | 0.8230 | 0.8207 | 0.8230 | 0.7442 | 0.8230 | 0.8230 | 0.7336 | 0.8210 | 0.8230 | 0.7576 |
0.1373 | 8.0 | 1072 | 0.4517 | 0.8169 | 0.8076 | 0.8169 | 0.7123 | 0.8169 | 0.8169 | 0.7020 | 0.8030 | 0.8169 | 0.7323 |
0.1271 | 9.0 | 1206 | 0.4533 | 0.8070 | 0.7945 | 0.8070 | 0.6892 | 0.8070 | 0.8070 | 0.6768 | 0.7906 | 0.8070 | 0.7169 |
0.1199 | 10.0 | 1340 | 0.4741 | 0.8248 | 0.8194 | 0.8248 | 0.7369 | 0.8248 | 0.8248 | 0.7269 | 0.8163 | 0.8248 | 0.7515 |
Framework versions
- Transformers 4.27.4
- Pytorch 2.0.0
- Datasets 2.11.0
- Tokenizers 0.13.3
- Downloads last month
- 15
This model does not have enough activity to be deployed to Inference API (serverless) yet. Increase its social
visibility and check back later, or deploy to Inference Endpoints (dedicated)
instead.