DunnBC22's picture
Update README.md
d1e90af
---
tags:
- generated_from_trainer
metrics:
- accuracy
- f1
- recall
- precision
model-index:
- name: dit-base-Document_Classification-Desafio_1
results:
- task:
name: Image Classification
type: image-classification
dataset:
name: imagefolder
type: imagefolder
config: validation
split: train
args: validation
metrics:
- name: Accuracy
type: accuracy
value: 0.9865
language:
- en
---
# dit-base-Document_Classification-Desafio_1
This model is a fine-tuned version of [microsoft/dit-base](https://huggingface.co/microsoft/dit-base).
It achieves the following results on the evaluation set:
- Loss: 0.0436
- Accuracy: 0.9865
- F1
- Weighted: 0.9865
- Micro: 0.9865
- Macro: 0.9863
- Recall
- Weighted: 0.9865
- Micro: 0.9865
- Macro: 0.9861
- Precision
- Weighted: 0.9869
- Micro: 0.9865
- Macro: 0.9870
## Model description
For more information on how it was created, check out the following link: https://github.com/DunnBC22/Vision_Audio_and_Multimodal_Projects/blob/main/Document%20AI/Multiclass%20Classification/Document%20Classification%20-%20Desafio%201/Document%20Classification%20-%20Desafio%201.ipynb
## Intended uses & limitations
This model is intended to demonstrate my ability to solve a complex problem using technology.
## Training and evaluation data
Dataset Source: https://www.kaggle.com/datasets/rywgar/document-classification-desafio-1
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 5e-05
- train_batch_size: 32
- eval_batch_size: 32
- seed: 42
- gradient_accumulation_steps: 4
- total_train_batch_size: 128
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- lr_scheduler_warmup_ratio: 0.1
- num_epochs: 8
### Training results
| Training Loss | Epoch | Step | Validation Loss | Accuracy | Weighted F1 | Micro F1 | Macro F1 | Weighted Recall | Micro Recall | Macro Recall | Weighted Precision | Micro Precision | Macro Precision |
|:-------------:|:-----:|:----:|:---------------:|:--------:|:-----------:|:--------:|:--------:|:---------------:|:------------:|:------------:|:------------------:|:---------------:|:---------------:|
| 0.8316 | 0.99 | 62 | 0.7519 | 0.743 | 0.7020 | 0.743 | 0.7015 | 0.743 | 0.743 | 0.7430 | 0.6827 | 0.743 | 0.6819 |
| 0.3561 | 2.0 | 125 | 0.2302 | 0.9395 | 0.9401 | 0.9395 | 0.9400 | 0.9395 | 0.9395 | 0.9394 | 0.9482 | 0.9395 | 0.9480 |
| 0.2222 | 2.99 | 187 | 0.1350 | 0.956 | 0.9564 | 0.956 | 0.9561 | 0.956 | 0.956 | 0.9551 | 0.9598 | 0.956 | 0.9600 |
| 0.1705 | 4.0 | 250 | 0.0873 | 0.9725 | 0.9727 | 0.9725 | 0.9725 | 0.9725 | 0.9725 | 0.9721 | 0.9740 | 0.9725 | 0.9740 |
| 0.1541 | 4.99 | 312 | 0.0642 | 0.9825 | 0.9825 | 0.9825 | 0.9824 | 0.9825 | 0.9825 | 0.9822 | 0.9830 | 0.9825 | 0.9830 |
| 0.1253 | 6.0 | 375 | 0.0330 | 0.9915 | 0.9915 | 0.9915 | 0.9914 | 0.9915 | 0.9915 | 0.9913 | 0.9916 | 0.9915 | 0.9916 |
| 0.1196 | 6.99 | 437 | 0.0524 | 0.982 | 0.9822 | 0.982 | 0.9820 | 0.982 | 0.982 | 0.9817 | 0.9832 | 0.982 | 0.9832 |
| 0.0896 | 7.94 | 496 | 0.0436 | 0.9865 | 0.9865 | 0.9865 | 0.9863 | 0.9865 | 0.9865 | 0.9861 | 0.9869 | 0.9865 | 0.9870 |
### Framework versions
- Transformers 4.28.1
- Pytorch 2.0.0
- Datasets 2.11.0
- Tokenizers 0.13.3