xls-r-es-test-lm-finetuned-sentiment-mesd

This model is a fine-tuned version of glob-asr/xls-r-es-test-lm on the None dataset. It achieves the following results on the evaluation set:

  • Loss: 1.7851
  • Accuracy: 0.2385

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 1.25e-05
  • train_batch_size: 64
  • eval_batch_size: 40
  • seed: 42
  • gradient_accumulation_steps: 4
  • total_train_batch_size: 256
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • lr_scheduler_warmup_ratio: 0.1
  • num_epochs: 20

Training results

Training Loss Epoch Step Validation Loss Accuracy
No log 0.86 3 1.7876 0.1923
1.9709 1.86 6 1.7869 0.2
1.9709 2.86 9 1.7859 0.2308
2.146 3.86 12 1.7851 0.2385
1.9622 4.86 15 1.7842 0.1923
1.9622 5.86 18 1.7834 0.1769
2.137 6.86 21 1.7823 0.1923
2.137 7.86 24 1.7812 0.1923
2.1297 8.86 27 1.7800 0.1846
1.9502 9.86 30 1.7787 0.1846
1.9502 10.86 33 1.7772 0.1846
2.1234 11.86 36 1.7760 0.1846
2.1234 12.86 39 1.7748 0.1846
2.1186 13.86 42 1.7736 0.1846
1.9401 14.86 45 1.7725 0.1846
1.9401 15.86 48 1.7715 0.1923
2.112 16.86 51 1.7706 0.1923
2.112 17.86 54 1.7701 0.1923
2.1094 18.86 57 1.7697 0.2
1.934 19.86 60 1.7696 0.2

Framework versions

  • Transformers 4.17.0
  • Pytorch 1.10.0+cu111
  • Datasets 2.0.0
  • Tokenizers 0.11.6
Downloads last month
7
Inference Examples
This model does not have enough activity to be deployed to Inference API (serverless) yet. Increase its social visibility and check back later, or deploy to Inference Endpoints (dedicated) instead.