anton-l's picture
anton-l HF staff
Upload README.md
c18e911
---
language:
- rm-sursilv
license: apache-2.0
tags:
- automatic-speech-recognition
- hf-asr-leaderboard
- robust-speech-event
datasets:
- mozilla-foundation/common_voice_8_0
metrics:
- wer
model-index:
- name: wav2vec2-xls-r-300m-rm-sursilv-d11
results:
- task:
type: automatic-speech-recognition
name: Speech Recognition
dataset:
type: mozilla-foundation/common_voice_8_0
name: Common Voice 8
args: rm-sursilv
metrics:
- type: wer
value: 0.24094169578811844
name: Test WER
- name: Test CER
type: cer
value: 0.049832791672554284
- task:
name: Automatic Speech Recognition
type: automatic-speech-recognition
dataset:
name: Robust Speech Event - Dev Data
type: speech-recognition-community-v2/dev_data
args: rm-sursilv
metrics:
- name: Test WER
type: wer
value: NA
- name: Test CER
type: cer
value: NA
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
#
This model is a fine-tuned version of [facebook/wav2vec2-xls-r-300m](https://huggingface.co/facebook/wav2vec2-xls-r-300m) on the MOZILLA-FOUNDATION/COMMON_VOICE_8_0 - RM-SURSILV dataset.
It achieves the following results on the evaluation set:
- Loss: 0.2511
- Wer: 0.2415
#### Evaluation Commands
1. To evaluate on mozilla-foundation/common_voice_8_0 with test split
python eval.py --model_id DrishtiSharma/wav2vec2-xls-r-300m-rm-sursilv-d11 --dataset mozilla-foundation/common_voice_8_0 --config rm-sursilv --split test --log_outputs
2. To evaluate on speech-recognition-community-v2/dev_data
Romansh-Sursilv language isn't available in speech-recognition-community-v2/dev_data
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 7e-05
- train_batch_size: 32
- eval_batch_size: 16
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- lr_scheduler_warmup_steps: 2000
- num_epochs: 125.0
- mixed_precision_training: Native AMP
### Training results
| Training Loss | Epoch | Step | Validation Loss | Wer |
|:-------------:|:------:|:-----:|:---------------:|:------:|
| 2.3958 | 17.44 | 1500 | 0.6808 | 0.6521 |
| 0.9663 | 34.88 | 3000 | 0.3023 | 0.3718 |
| 0.7963 | 52.33 | 4500 | 0.2588 | 0.3046 |
| 0.6893 | 69.77 | 6000 | 0.2436 | 0.2718 |
| 0.6148 | 87.21 | 7500 | 0.2521 | 0.2572 |
| 0.5556 | 104.65 | 9000 | 0.2490 | 0.2442 |
| 0.5258 | 122.09 | 10500 | 0.2515 | 0.2442 |
### Framework versions
- Transformers 4.17.0.dev0
- Pytorch 1.10.2+cu102
- Datasets 1.18.2.dev0
- Tokenizers 0.11.0