roberta-large-flash-attention-2-lora-patent-classification

This model is a fine-tuned version of roberta-large on the patent-classification dataset. It achieves the following results on the evaluation set:

  • Loss: 0.8395
  • Accuracy: 0.6304
  • Precision Macro: 0.6136
  • Recall Macro: 0.5995
  • F1-score Macro: 0.5984

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 2e-05
  • train_batch_size: 6
  • eval_batch_size: 4
  • seed: 42
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: cosine
  • num_epochs: 3
  • mixed_precision_training: Native AMP

Training results

Training Loss Epoch Step Validation Loss Accuracy Precision Macro Recall Macro F1-score Macro
0.7566 1.0 4167 0.9131 0.5692 0.6231 0.5423 0.5631
0.6974 2.0 8334 0.8428 0.6174 0.6169 0.5910 0.5942
0.7219 3.0 12501 0.8395 0.6304 0.6136 0.5995 0.5984

Framework versions

  • PEFT 0.7.2.dev0
  • Transformers 4.37.0.dev0
  • Pytorch 2.1.0+cu121
  • Datasets 2.16.2.dev0
  • Tokenizers 0.15.0
Downloads last month
4
Inference API
Unable to determine this model’s pipeline type. Check the docs .

Model tree for DrishtiSharma/roberta-large-lora-patent-classification-2e-5

Adapter
(62)
this model