roberta-large-flash-attention-2-lora-patent-classification-2e-4
This model is a fine-tuned version of roberta-large on the patent-classification dataset. It achieves the following results on the evaluation set:
- Loss: 0.8264
- Accuracy: 0.659
- Precision Macro: 0.6268
- Recall Macro: 0.6433
- F1-score Macro: 0.6295
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 0.0002
- train_batch_size: 6
- eval_batch_size: 4
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: cosine
- num_epochs: 3
- mixed_precision_training: Native AMP
Training results
Training Loss | Epoch | Step | Validation Loss | Accuracy | Precision Macro | Recall Macro | F1-score Macro |
---|---|---|---|---|---|---|---|
0.8107 | 1.0 | 4167 | 0.9531 | 0.5096 | 0.6495 | 0.4554 | 0.4831 |
0.7105 | 2.0 | 8334 | 0.8408 | 0.6426 | 0.6307 | 0.6261 | 0.6208 |
0.6299 | 3.0 | 12501 | 0.8264 | 0.659 | 0.6268 | 0.6433 | 0.6295 |
Framework versions
- PEFT 0.7.2.dev0
- Transformers 4.37.0.dev0
- Pytorch 2.1.0+cu121
- Datasets 2.16.2.dev0
- Tokenizers 0.15.0
- Downloads last month
- 2
Model tree for DrishtiSharma/roberta-large-lora-patent-classification-2e-4
Base model
FacebookAI/roberta-large