DrishtiSharma's picture
End of training
5c7af26
|
raw
history blame
2.88 kB
metadata
license: apache-2.0
base_model: bert-large-uncased
tags:
  - generated_from_trainer
metrics:
  - accuracy
model-index:
  - name: bert-large-uncased-Hate_Offensive_or_Normal_Speech
    results: []

bert-large-uncased-Hate_Offensive_or_Normal_Speech

This model is a fine-tuned version of bert-large-uncased on the None dataset. It achieves the following results on the evaluation set:

  • Loss: 0.0610
  • Accuracy: 0.9853
  • Weighted f1: 0.9853
  • Weighted recall: 0.9853
  • Weighted precision: 0.9854
  • Micro f1: 0.9853
  • Micro recall: 0.9853
  • Micro precision: 0.9853
  • Macro f1: 0.9851
  • Macro recall: 0.9850
  • Macro precision: 0.9853

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 2e-05
  • train_batch_size: 16
  • eval_batch_size: 16
  • seed: 42
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • num_epochs: 5

Training results

Training Loss Epoch Step Validation Loss Accuracy Weighted f1 Weighted recall Weighted precision Micro f1 Micro recall Micro precision Macro f1 Macro recall Macro precision
0.2927 1.0 153 0.1163 0.9462 0.9469 0.9462 0.9512 0.9462 0.9462 0.9462 0.9429 0.9472 0.9427
0.066 2.0 306 0.1119 0.9739 0.9739 0.9739 0.9741 0.9739 0.9739 0.9739 0.9729 0.9742 0.9718
0.0267 3.0 459 0.0805 0.9821 0.9821 0.9821 0.9825 0.9821 0.9821 0.9821 0.9804 0.9815 0.9796
0.0209 4.0 612 0.0610 0.9853 0.9853 0.9853 0.9854 0.9853 0.9853 0.9853 0.9851 0.9850 0.9853
0.0097 5.0 765 0.0673 0.9837 0.9836 0.9837 0.9838 0.9837 0.9837 0.9837 0.9832 0.9833 0.9833

Framework versions

  • Transformers 4.34.0.dev0
  • Pytorch 2.0.1+cu118
  • Datasets 2.14.6.dev0
  • Tokenizers 0.13.3