|
--- |
|
language: |
|
- en |
|
license: apache-2.0 |
|
base_model: microsoft/WizardLM-2-8x22B |
|
tags: |
|
- exl2 |
|
--- |
|
|
|
# WizardLM-2-8x22B - EXL2 2.5bpw |
|
|
|
This is a 2.5bpw EXL2 quant of [microsoft/WizardLM-2-8x22B](https://huggingface.co/microsoft/WizardLM-2-8x22B) |
|
|
|
Details about the model can be found at the above model page. |
|
|
|
## EXL2 Version |
|
|
|
These quants were made with exllamav2 version 0.0.18. Quants made on this version of EXL2 may not work on older versions of the exllamav2 library. |
|
|
|
If you have problems loading these models, please update Text Generation WebUI to the latest version. |
|
|
|
## Perplexity Scoring |
|
|
|
Below are the perplexity scores for the EXL2 models. A lower score is better. |
|
|
|
| Quant Level | Perplexity Score | |
|
|-------------|------------------| |
|
| 7.0 | 4.5859 | |
|
| 6.0 | 4.6252 | |
|
| 5.5 | 4.6493 | |
|
| 5.0 | 4.6937 | |
|
| 4.5 | 4.8029 | |
|
| 4.0 | 4.9372 | |
|
| 3.5 | 5.1336 | |
|
| 3.25 | 5.3636 | |
|
| 3.0 | 5.5468 | |
|
| 2.75 | 5.8255 | |
|
| 2.5 | 6.3362 | |
|
| 2.25 | 7.7763 | |
|
|
|
|
|
### Perplexity Script |
|
|
|
This was the script used for perplexity testing. |
|
|
|
```bash |
|
#!/bin/bash |
|
|
|
# Activate the conda environment |
|
source ~/miniconda3/etc/profile.d/conda.sh |
|
conda activate exllamav2 |
|
|
|
DATA_SET=/root/wikitext/wikitext-2-v1.parquet |
|
|
|
# Set the model name and bit size |
|
MODEL_NAME="WizardLM-2-8x22B" |
|
BIT_PRECISIONS=(6.0 5.5 5.0 4.5 4.0 3.5 3.25 3.0 2.75 2.5 2.25) |
|
|
|
# Print the markdown table header |
|
echo "| Quant Level | Perplexity Score |" |
|
echo "|-------------|------------------|" |
|
|
|
for BIT_PRECISION in "${BIT_PRECISIONS[@]}" |
|
do |
|
LOCAL_FOLDER="/root/models/${MODEL_NAME}_exl2_${BIT_PRECISION}bpw" |
|
REMOTE_FOLDER="Dracones/${MODEL_NAME}_exl2_${BIT_PRECISION}bpw" |
|
|
|
if [ ! -d "$LOCAL_FOLDER" ]; then |
|
huggingface-cli download --local-dir-use-symlinks=False --local-dir "${LOCAL_FOLDER}" "${REMOTE_FOLDER}" >> /root/download.log 2>&1 |
|
fi |
|
|
|
output=$(python test_inference.py -m "$LOCAL_FOLDER" -gs 40,40,40,40 -ed "$DATA_SET") |
|
score=$(echo "$output" | grep -oP 'Evaluation perplexity: \K[\d.]+') |
|
echo "| $BIT_PRECISION | $score |" |
|
# rm -rf "${LOCAL_FOLDER}" |
|
done |
|
``` |
|
|
|
|
|
## Quant Details |
|
|
|
This is the script used for quantization. |
|
|
|
```bash |
|
#!/bin/bash |
|
|
|
# Activate the conda environment |
|
source ~/miniconda3/etc/profile.d/conda.sh |
|
conda activate exllamav2 |
|
|
|
# Set the model name and bit size |
|
MODEL_NAME="WizardLM-2-8x22B" |
|
|
|
# Define variables |
|
MODEL_DIR="/mnt/storage/models/$MODEL_NAME" |
|
OUTPUT_DIR="exl2_$MODEL_NAME" |
|
MEASUREMENT_FILE="measurements/$MODEL_NAME.json" |
|
|
|
# Create the measurement file if needed |
|
if [ ! -f "$MEASUREMENT_FILE" ]; then |
|
echo "Creating $MEASUREMENT_FILE" |
|
# Create directories |
|
if [ -d "$OUTPUT_DIR" ]; then |
|
rm -r "$OUTPUT_DIR" |
|
fi |
|
mkdir "$OUTPUT_DIR" |
|
|
|
python convert.py -i $MODEL_DIR -o $OUTPUT_DIR -nr -om $MEASUREMENT_FILE |
|
fi |
|
|
|
# Choose one of the below. Either create a single quant for testing or a batch of them. |
|
# BIT_PRECISIONS=(2.25) |
|
BIT_PRECISIONS=(5.0 4.5 4.0 3.5 3.0 2.75 2.5 2.25) |
|
|
|
for BIT_PRECISION in "${BIT_PRECISIONS[@]}" |
|
do |
|
CONVERTED_FOLDER="models/${MODEL_NAME}_exl2_${BIT_PRECISION}bpw" |
|
|
|
# If it doesn't already exist, make the quant |
|
if [ ! -d "$CONVERTED_FOLDER" ]; then |
|
|
|
echo "Creating $CONVERTED_FOLDER" |
|
|
|
# Create directories |
|
if [ -d "$OUTPUT_DIR" ]; then |
|
rm -r "$OUTPUT_DIR" |
|
fi |
|
mkdir "$OUTPUT_DIR" |
|
mkdir "$CONVERTED_FOLDER" |
|
|
|
# Run conversion commands |
|
python convert.py -i $MODEL_DIR -o $OUTPUT_DIR -nr -m $MEASUREMENT_FILE -b $BIT_PRECISION -cf $CONVERTED_FOLDER |
|
|
|
fi |
|
done |
|
``` |
|
|