|
--- |
|
license: apache-2.0 |
|
--- |
|
# **🐻❄️COKAL-v1_70B🐻❄️** |
|
![img](./COKAL-DPO_bear.png) |
|
|
|
## Model Details |
|
|
|
**Model Developers** Seungyoo Lee (DopeorNope) |
|
|
|
**Input** Models input text only. |
|
|
|
**Output** Models generate text only. |
|
|
|
**Model Architecture** |
|
COKAL-v1_70B is an auto-regressive 70B language model based on the LLaMA2 transformer architecture. |
|
|
|
**Base Model** |
|
|
|
|
|
|
|
**Training Dataset** |
|
|
|
- SFT training dataset: [garage-bAInd/Open-Platypus](https://huggingface.co/datasets/garage-bAInd/Open-Platypus) |
|
|
|
|
|
**Training** |
|
I developed the model in an environment with A100 x 8 |
|
|
|
|
|
# Implementation Code |
|
```python |
|
|
|
from transformers import AutoModelForCausalLM, AutoTokenizer |
|
import torch |
|
|
|
repo = "DopeorNope/COKAL-v1_70B" |
|
model = AutoModelForCausalLM.from_pretrained( |
|
repo, |
|
return_dict=True, |
|
torch_dtype=torch.float16, |
|
device_map='auto' |
|
) |
|
model_tokenizer = AutoTokenizer.from_pretrained(repo) |
|
``` |
|
|
|
--- |