DmitryPogrebnoy's picture
Update README.md
1686315
---
language:
- ru
license: apache-2.0
---
# Model DmitryPogrebnoy/MedDistilBertBaseRuCased
# Model Description
This model is fine-tuned version of [DmitryPogrebnoy/distilbert-base-russian-cased](https://huggingface.co/DmitryPogrebnoy/distilbert-base-russian-cased).
The code for the fine-tuned process can be found [here](https://github.com/DmitryPogrebnoy/MedSpellChecker/blob/main/spellchecker/ml_ranging/models/med_distilbert_base_russian_cased/fine_tune_distilbert_base_russian_cased.py).
The model is fine-tuned on a specially collected dataset of over 30,000 medical anamneses in Russian.
The collected dataset can be found [here](https://github.com/DmitryPogrebnoy/MedSpellChecker/blob/main/data/anamnesis/processed/all_anamnesis.csv).
This model was created as part of a master's project to develop a method for correcting typos
in medical histories using BERT models as a ranking of candidates.
The project is open source and can be found [here](https://github.com/DmitryPogrebnoy/MedSpellChecker).
# How to Get Started With the Model
You can use the model directly with a pipeline for masked language modeling:
```python
>>> from transformers import pipeline
>>> pipeline = pipeline('fill-mask', model='DmitryPogrebnoy/MedDistilBertBaseRuCased')
>>> pipeline("У пациента [MASK] боль в грудине.")
[{'score': 0.1733243614435196,
'token': 6880,
'token_str': 'имеется',
'sequence': 'У пациента имеется боль в грудине.'},
{'score': 0.08818087726831436,
'token': 1433,
'token_str': 'есть',
'sequence': 'У пациента есть боль в грудине.'},
{'score': 0.03620537742972374,
'token': 3793,
'token_str': 'особенно',
'sequence': 'У пациента особенно боль в грудине.'},
{'score': 0.03438418731093407,
'token': 5168,
'token_str': 'бол',
'sequence': 'У пациента бол боль в грудине.'},
{'score': 0.032936397939920425,
'token': 6281,
'token_str': 'протекает',
'sequence': 'У пациента протекает боль в грудине.'}]
```
Or you can load the model and tokenizer and do what you need to do:
```python
>>> from transformers import AutoTokenizer, AutoModelForMaskedLM
>>> tokenizer = AutoTokenizer.from_pretrained("DmitryPogrebnoy/MedDistilBertBaseRuCased")
>>> model = AutoModelForMaskedLM.from_pretrained("DmitryPogrebnoy/MedDistilBertBaseRuCased")
```