|
--- |
|
language: |
|
- ru |
|
license: apache-2.0 |
|
--- |
|
|
|
# Model DmitryPogrebnoy/MedDistilBertBaseRuCased |
|
|
|
# Model Description |
|
|
|
This model is fine-tuned version of [DmitryPogrebnoy/distilbert-base-russian-cased](https://huggingface.co/DmitryPogrebnoy/distilbert-base-russian-cased). |
|
The code for the fine-tuned process can be found [here](https://github.com/DmitryPogrebnoy/MedSpellChecker/blob/main/spellchecker/ml_ranging/models/med_distilbert_base_russian_cased/fine_tune_distilbert_base_russian_cased.py). |
|
The model is fine-tuned on a specially collected dataset of over 30,000 medical anamneses in Russian. |
|
The collected dataset can be found [here](https://github.com/DmitryPogrebnoy/MedSpellChecker/blob/main/data/anamnesis/processed/all_anamnesis.csv). |
|
|
|
This model was created as part of a master's project to develop a method for correcting typos |
|
in medical histories using BERT models as a ranking of candidates. |
|
The project is open source and can be found [here](https://github.com/DmitryPogrebnoy/MedSpellChecker). |
|
|
|
# How to Get Started With the Model |
|
|
|
You can use the model directly with a pipeline for masked language modeling: |
|
|
|
```python |
|
>>> from transformers import pipeline |
|
>>> pipeline = pipeline('fill-mask', model='DmitryPogrebnoy/MedDistilBertBaseRuCased') |
|
>>> pipeline("У пациента [MASK] боль в грудине.") |
|
[{'score': 0.1733243614435196, |
|
'token': 6880, |
|
'token_str': 'имеется', |
|
'sequence': 'У пациента имеется боль в грудине.'}, |
|
{'score': 0.08818087726831436, |
|
'token': 1433, |
|
'token_str': 'есть', |
|
'sequence': 'У пациента есть боль в грудине.'}, |
|
{'score': 0.03620537742972374, |
|
'token': 3793, |
|
'token_str': 'особенно', |
|
'sequence': 'У пациента особенно боль в грудине.'}, |
|
{'score': 0.03438418731093407, |
|
'token': 5168, |
|
'token_str': 'бол', |
|
'sequence': 'У пациента бол боль в грудине.'}, |
|
{'score': 0.032936397939920425, |
|
'token': 6281, |
|
'token_str': 'протекает', |
|
'sequence': 'У пациента протекает боль в грудине.'}] |
|
``` |
|
|
|
Or you can load the model and tokenizer and do what you need to do: |
|
|
|
```python |
|
>>> from transformers import AutoTokenizer, AutoModelForMaskedLM |
|
>>> tokenizer = AutoTokenizer.from_pretrained("DmitryPogrebnoy/MedDistilBertBaseRuCased") |
|
>>> model = AutoModelForMaskedLM.from_pretrained("DmitryPogrebnoy/MedDistilBertBaseRuCased") |
|
``` |
|
|
|
|
|
|