metadata
license: apache-2.0
base_model: google/vit-base-patch16-224-in21k
tags:
- generated_from_trainer
datasets:
- imagefolder
metrics:
- accuracy
model-index:
- name: image_classification
results:
- task:
name: Image Classification
type: image-classification
dataset:
name: imagefolder
type: imagefolder
config: default
split: train
args: default
metrics:
- name: Accuracy
type: accuracy
value: 0.675
image_classification
This model is a fine-tuned version of google/vit-base-patch16-224-in21k on the imagefolder dataset. It achieves the following results on the evaluation set:
- Loss: 1.0801
- Accuracy: 0.675
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 6e-05
- train_batch_size: 32
- eval_batch_size: 32
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 10
Training results
Training Loss | Epoch | Step | Validation Loss | Accuracy |
---|---|---|---|---|
No log | 1.0 | 23 | 1.0917 | 0.625 |
No log | 2.0 | 46 | 1.1605 | 0.6125 |
No log | 3.0 | 69 | 1.0543 | 0.6375 |
No log | 4.0 | 92 | 1.1663 | 0.6 |
No log | 5.0 | 115 | 1.2546 | 0.5875 |
No log | 6.0 | 138 | 1.0580 | 0.6 |
No log | 7.0 | 161 | 1.1193 | 0.6125 |
No log | 8.0 | 184 | 1.2297 | 0.525 |
No log | 9.0 | 207 | 1.2295 | 0.55 |
No log | 10.0 | 230 | 1.0842 | 0.6125 |
Framework versions
- Transformers 4.35.2
- Pytorch 2.1.0+cu121
- Datasets 2.17.0
- Tokenizers 0.15.1