raildefectfft1

This model is a fine-tuned version of google/vit-base-patch16-224-in21k on the defect dataset. It achieves the following results on the evaluation set:

  • Loss: 0.7259
  • Accuracy: 0.7914

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 0.0002
  • train_batch_size: 30
  • eval_batch_size: 8
  • seed: 42
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • num_epochs: 30

Training results

Training Loss Epoch Step Validation Loss Accuracy
1.3927 0.67 10 1.1308 0.6429
0.8111 1.33 20 0.9788 0.6629
0.513 2.0 30 0.7938 0.74
0.2943 2.67 40 0.8517 0.7343
0.2029 3.33 50 0.7300 0.7686
0.1629 4.0 60 0.7259 0.7914
0.1131 4.67 70 0.9103 0.7314
0.0955 5.33 80 0.8504 0.7657
0.0547 6.0 90 1.0702 0.72
0.0489 6.67 100 1.1708 0.6971
0.0382 7.33 110 1.2376 0.6943
0.0356 8.0 120 1.3361 0.6857
0.0311 8.67 130 1.1809 0.7229
0.0346 9.33 140 1.3405 0.7086
0.0378 10.0 150 1.1800 0.7171
0.0326 10.67 160 1.1292 0.7343
0.0319 11.33 170 1.0885 0.7371
0.0347 12.0 180 1.4550 0.6771
0.0283 12.67 190 1.1957 0.7314
0.0336 13.33 200 1.4648 0.6743
0.0175 14.0 210 1.4927 0.6771
0.0167 14.67 220 1.3760 0.7057
0.0149 15.33 230 1.2464 0.7229
0.0154 16.0 240 1.2553 0.7257
0.0135 16.67 250 1.2768 0.7314
0.0133 17.33 260 1.2857 0.7343
0.0122 18.0 270 1.2905 0.7314
0.0121 18.67 280 1.2929 0.7314
0.0115 19.33 290 1.2958 0.7314
0.0111 20.0 300 1.2985 0.7314
0.011 20.67 310 1.3020 0.7343
0.0103 21.33 320 1.3051 0.7371
0.0103 22.0 330 1.3075 0.7371
0.0104 22.67 340 1.3098 0.7371
0.0096 23.33 350 1.3128 0.7371
0.0095 24.0 360 1.3154 0.7371
0.0096 24.67 370 1.3162 0.7371
0.0093 25.33 380 1.3183 0.7371
0.0091 26.0 390 1.3200 0.7371
0.0092 26.67 400 1.3213 0.7371
0.0089 27.33 410 1.3219 0.7371
0.0092 28.0 420 1.3224 0.7371
0.0089 28.67 430 1.3228 0.7371
0.0089 29.33 440 1.3231 0.7371
0.0089 30.0 450 1.3233 0.7371

Framework versions

  • Transformers 4.30.1
  • Pytorch 2.0.1+cu118
  • Datasets 2.12.0
  • Tokenizers 0.13.3
Downloads last month
21
Inference Examples
This model does not have enough activity to be deployed to Inference API (serverless) yet. Increase its social visibility and check back later, or deploy to Inference Endpoints (dedicated) instead.

Evaluation results