Text Classification
English

This modelcard is a fine tuned version of Bert-base-uncased for text classification given candidates profile description on the resume.

Model Details

  • Language(s) (NLP): English
  • License: [More Information Needed]
  • Finetuned from model [bert-base-uncased]:

Bias, Risks, and Limitations

Risks inherited from base model apply

How to Get Started with the Model

Training Details

Training Procedure

Preprocessing [optional]

[More Information Needed]

Training Hyperparameters

  • Training regime: [More Information Needed]

Evaluation

Step Training Loss Validation Loss Accuracy F1 Precision Recall 50 3.191700 3.144314 0.045576 0.005990 0.043515 0.042929 100 2.940400 2.529969 0.313673 0.198400 0.326865 0.263533 150 2.289300 1.829516 0.638070 0.522103 0.562795 0.570456 200 1.582400 1.251463 0.784182 0.678805 0.699407 0.707561 250 1.120000 1.036136 0.773458 0.668376 0.700246 0.693412 300 0.886400 0.898808 0.812332 0.733046 0.757457 0.741408 350 0.799100 0.825964 0.824397 0.745086 0.766041 0.752816 400 0.848900 0.734574 0.836461 0.773499 0.812788 0.768352 450 0.699000 0.745959 0.833780 0.759005 0.780415 0.763101 500 0.510300 0.710035 0.844504 0.771996 0.794520 0.775719 550 0.514200 0.679396 0.840483 0.768999 0.785576 0.773328 600 0.516700 0.684477 0.843164 0.770532 0.785427 0.774498 650 0.483200 0.686520 0.840483 0.768139 0.780840 0.772857

Metrics

eval_loss	eval_Accuracy	eval_F1	eval_Precision	eval_Recall

train 0.479060 0.897583 0.839754 0.911787 0.840669 val 0.710035 0.844504 0.771996 0.794520 0.775719

Hardware

colab T4

Model Card Contact

[email protected]

Downloads last month

-

Downloads are not tracked for this model. How to track
Inference Providers NEW
This model isn't deployed by any Inference Provider. 🙋 Ask for provider support

Datasets used to train Dh1raj/bert-base-uncase-resume-class