Devarshi's picture
update model card README.md
877b924
---
license: apache-2.0
tags:
- generated_from_trainer
datasets:
- imagefolder
metrics:
- accuracy
- f1
- recall
- precision
model-index:
- name: Swin_transformer_dent_detection
results:
- task:
name: Image Classification
type: image-classification
dataset:
name: imagefolder
type: imagefolder
config: default
split: train
args: default
metrics:
- name: Accuracy
type: accuracy
value: 0.55
- name: F1
type: f1
value: 0.55
- name: Recall
type: recall
value: 0.55
- name: Precision
type: precision
value: 0.55
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# Swin_transformer_dent_detection
This model is a fine-tuned version of [microsoft/swin-base-patch4-window7-224-in22k](https://huggingface.co/microsoft/swin-base-patch4-window7-224-in22k) on the imagefolder dataset.
It achieves the following results on the evaluation set:
- Loss: 0.6854
- Accuracy: 0.55
- F1: 0.55
- Recall: 0.55
- Precision: 0.55
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 5e-05
- train_batch_size: 32
- eval_batch_size: 32
- seed: 42
- gradient_accumulation_steps: 4
- total_train_batch_size: 128
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- lr_scheduler_warmup_ratio: 0.1
- num_epochs: 3
### Training results
| Training Loss | Epoch | Step | Validation Loss | Accuracy | F1 | Recall | Precision |
|:-------------:|:-----:|:----:|:---------------:|:--------:|:----:|:------:|:---------:|
| No log | 0.8 | 1 | 0.6854 | 0.55 | 0.55 | 0.55 | 0.55 |
| No log | 1.8 | 2 | 0.9226 | 0.55 | 0.55 | 0.55 | 0.55 |
| No log | 2.8 | 3 | 0.8610 | 0.55 | 0.55 | 0.55 | 0.55 |
### Framework versions
- Transformers 4.23.1
- Pytorch 1.13.0
- Datasets 2.6.1
- Tokenizers 0.13.1