Modèle de détection de 4 sentiments avec FlauBERT (mixed, negative, objective, positive)

Comment l'utiliser ?

from transformers import AutoTokenizer, AutoModelForSequenceClassification
from transformers import pipeline

loaded_tokenizer = AutoTokenizer.from_pretrained('flaubert/flaubert_large_cased')
loaded_model = AutoModelForSequenceClassification.from_pretrained("DemangeJeremy/4-sentiments-with-flaubert")

nlp = pipeline('sentiment-analysis', model=loaded_model, tokenizer=loaded_tokenizer)

print(nlp("Je suis plutôt confiant."))
[{'label': 'OBJECTIVE', 'score': 0.3320835530757904}]

Résultats de l'évaluation du modèle

Epoch Validation Loss Samples Per Second
1 2.219246 49.476000
2 1.883753 47.259000
3 1.747969 44.957000
4 1.695606 43.872000
5 1.641470 45.726000

Citation

Pour toute utilisation de ce modèle, merci d'utiliser cette citation :

Jérémy Demange, Four sentiments with FlauBERT, (2021), Hugging Face repository, https://huggingface.co/DemangeJeremy/4-sentiments-with-flaubert

Downloads last month
54
Inference Examples
This model does not have enough activity to be deployed to Inference API (serverless) yet. Increase its social visibility and check back later, or deploy to Inference Endpoints (dedicated) instead.