datasets:
- wikipedia
language:
- lt
license: apache-2.0
tags:
- text-generation
widget:
- text: 'Lietuva yra viena '
Model description
GPT-2 model from Lithuania using Wikipedia corpus dataset based on GPT-2 small model.
This is only the first version of the model; over time model will be improved using a more extensive dataset and better data preparation.
Training data
This model was pre-trained with 180MB of Lithuanian Wikipedia. The texts are tokenized using a byte-level version of Byte Pair Encoding (BPE).
Training
The model was trained on wiki-corpus for 40 hours using NVIDIA Tesla P100 GPU.
How to use
Load model
from transformers import AutoTokenizer, TFAutoModelWithLMHead
import tensorflow as tf
tokenizer = AutoTokenizer.from_pretrained("DeividasM/gpt2_lithuanian_small")
model = TFAutoModelWithLMHead.from_pretrained("DeividasM/gpt2_lithuanian_small")
# Get sequence length max of 1024
tokenizer.model_max_length=1024
model.eval()
Generate text
text = "tekstas "
inputs = tokenizer.encode(text, return_tensors="tf")
outputs = model.generate(inputs, eos_token_id=50256, pad_token_id=50256,
do_sample=True,
max_length=40,
top_k=40)
print(tokenizer.decode(outputs[0]))
Limitations and bias
The training data used for this model come from Lithuanian Wikipedia. We know it contains a lot of unfiltered content from the internet, which is far from neutral. As the OpenAI team themselves point out in their model card:
"Because large-scale language models like GPT-2 do not distinguish fact from fiction, we don’t support use-cases that require the generated text to be true. Additionally, language models like GPT-2 reflect the biases inherent to the systems they were trained on, so we do not recommend that they be deployed into systems that interact with humans > unless the deployers first carry out a study of biases relevant to the intended use-case. We found no statistically significant difference in gender, race, and religious bias probes between 774M and 1.5B, implying all versions of GPT-2 should be approached with similar levels of caution around use cases that are sensitive to biases around human attributes."
Author
Lithuanian GPT-2 small was trained and evaluated by Deividas Mataciunas (https://www.linkedin.com/in/deividasmataciunas/)