|
--- |
|
library_name: transformers |
|
license: llama3 |
|
datasets: |
|
- DeepMount00/llm_ita_ultra |
|
language: |
|
- it |
|
--- |
|
## Model Architecture |
|
- **Base Model:** [Meta-Llama-3-8B](https://huggingface.co/meta-llama/Meta-Llama-3-8B) |
|
- **Specialization:** Italian Language |
|
|
|
## Evaluation |
|
|
|
For a detailed comparison of model performance, check out the [Leaderboard for Italian Language Models](https://huggingface.co/spaces/FinancialSupport/open_ita_llm_leaderboard). |
|
|
|
Here's a breakdown of the performance metrics: |
|
|
|
| Metric | hellaswag_it acc_norm | arc_it acc_norm | m_mmlu_it 5-shot acc | Average | |
|
|:----------------------------|:----------------------|:----------------|:---------------------|:--------| |
|
| **Accuracy Normalized** | 0.6483 | 0.5329 | 0.5729 | 0.5847 | |
|
|
|
--- |
|
|
|
## How to Use |
|
|
|
```python |
|
from transformers import AutoModelForCausalLM, AutoTokenizer |
|
import torch |
|
device = torch.device("cuda" if torch.cuda.is_available() else "cpu") |
|
|
|
MODEL_NAME = "DeepMount00/Llama-3-8b-Ita" |
|
|
|
model = AutoModelForCausalLM.from_pretrained(MODEL_NAME, torch_dtype=torch.bfloat16).eval() |
|
model.to(device) |
|
tokenizer = AutoTokenizer.from_pretrained(MODEL_NAME) |
|
|
|
def generate_answer(prompt): |
|
messages = [ |
|
{"role": "user", "content": prompt}, |
|
] |
|
model_inputs = tokenizer.apply_chat_template(messages, return_tensors="pt").to(device) |
|
generated_ids = model.generate(model_inputs, max_new_tokens=200, do_sample=True, |
|
temperature=0.001) |
|
decoded = tokenizer.batch_decode(generated_ids, skip_special_tokens=True) |
|
return decoded[0] |
|
|
|
prompt = "Come si apre un file json in python?" |
|
answer = generate_answer(prompt) |
|
print(answer) |
|
``` |
|
--- |
|
## Developer |
|
[Michele Montebovi] |