bedio's picture
Update README.md
de6dcd7 verified
---
library_name: transformers
model-index:
- name: ldm_soup_Llama-3.1-8B-Inst
results:
- task:
type: text-generation
name: Text Generation
dataset:
name: IFEval (0-Shot)
type: HuggingFaceH4/ifeval
args:
num_few_shot: 0
metrics:
- type: inst_level_strict_acc and prompt_level_strict_acc
value: 80.33
name: strict accuracy
source:
url: >-
https://huggingface.co/spaces/open-llm-leaderboard/open_llm_leaderboard?query=DeepAutoAI/ldm_soup_Llama-3.1-8B-Inst
name: Open LLM Leaderboard
- task:
type: text-generation
name: Text Generation
dataset:
name: BBH (3-Shot)
type: BBH
args:
num_few_shot: 3
metrics:
- type: acc_norm
value: 31.1
name: normalized accuracy
source:
url: >-
https://huggingface.co/spaces/open-llm-leaderboard/open_llm_leaderboard?query=DeepAutoAI/ldm_soup_Llama-3.1-8B-Inst
name: Open LLM Leaderboard
- task:
type: text-generation
name: Text Generation
dataset:
name: MATH Lvl 5 (4-Shot)
type: hendrycks/competition_math
args:
num_few_shot: 4
metrics:
- type: exact_match
value: 11.56
name: exact match
source:
url: >-
https://huggingface.co/spaces/open-llm-leaderboard/open_llm_leaderboard?query=DeepAutoAI/ldm_soup_Llama-3.1-8B-Inst
name: Open LLM Leaderboard
- task:
type: text-generation
name: Text Generation
dataset:
name: GPQA (0-shot)
type: Idavidrein/gpqa
args:
num_few_shot: 0
metrics:
- type: acc_norm
value: 5.26
name: acc_norm
source:
url: >-
https://huggingface.co/spaces/open-llm-leaderboard/open_llm_leaderboard?query=DeepAutoAI/ldm_soup_Llama-3.1-8B-Inst
name: Open LLM Leaderboard
- task:
type: text-generation
name: Text Generation
dataset:
name: MuSR (0-shot)
type: TAUR-Lab/MuSR
args:
num_few_shot: 0
metrics:
- type: acc_norm
value: 11.52
name: acc_norm
source:
url: >-
https://huggingface.co/spaces/open-llm-leaderboard/open_llm_leaderboard?query=DeepAutoAI/ldm_soup_Llama-3.1-8B-Inst
name: Open LLM Leaderboard
- task:
type: text-generation
name: Text Generation
dataset:
name: MMLU-PRO (5-shot)
type: TIGER-Lab/MMLU-Pro
config: main
split: test
args:
num_few_shot: 5
metrics:
- type: acc
value: 32.07
name: accuracy
source:
url: >-
https://huggingface.co/spaces/open-llm-leaderboard/open_llm_leaderboard?query=DeepAutoAI/ldm_soup_Llama-3.1-8B-Inst
name: Open LLM Leaderboard
license: apache-2.0
language:
- en
base_model:
- meta-llama/Llama-3.1-8B-Instruct
---
# Model Card for DeepAutoAI/ldm_soup_Llama-3.1-8B-Inst
Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in
- compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0
## Overview
**DeepAutoAI/ldm_soup_Llama-3.1-8B-Inst** is developed by **deepAuto.ai** and builds upon the **VAGOsolutions/Llama-3.1-SauerkrautLM-8B-Instruct** model. Our approach leverages the base model’s pretrained weights and optimizes them for the **Winogrande** and **ARC-Challenge** datasets by training a latent diffusion model on the pretrained weights.
Through this process, we learn the distribution of the base model's weight space, enabling us to explore optimal configurations. We then sample multiple sets of weights, using the **model-soup averaging technique** to identify the best-performing weights for both datasets. These weights are merged using linear interpolation to create the final model weights for **DeepAutoAI/ldm_soup_Llama-3.1-8B-Inst**.
This approach has led to improved performance on previously unseen leaderboard tasks, all without any additional task-specific training.
The work is currently in progress
## References
<a href="https://arxiv.org/abs/2402.18153" target="_blank">Diffusion-Based Neural Network Weights Generation</a>
## Evaluation
### Results
# [Open LLM Leaderboard Evaluation Results](https://huggingface.co/spaces/open-llm-leaderboard/open_llm_leaderboard)
Detailed results can be found [here](https://huggingface.co/datasets/open-llm-leaderboard/details_DeepAutoAI__ldm_soup_Llama-3.1-8B-Inst)
| Metric |Value|
|-------------------|----:|
|Avg. |28.64|
|IFEval (0-Shot) |80.33|
|BBH (3-Shot) |31.10|
|MATH Lvl 5 (4-Shot)|11.56|
|GPQA (0-shot) | 5.26|
|MuSR (0-shot) |11.52|
|MMLU-PRO (5-shot) |32.07|