Tasks | Version | Filter | n-shot | Metric | Value | Stderr | |
---|---|---|---|---|---|---|---|
arc_challenge | Yaml | none | 0 | acc | 0.2619 | ± | 0.0128 |
none | 0 | acc_norm | 0.2892 | ± | 0.0133 | ||
arc_easy | Yaml | none | 0 | acc | 0.4777 | ± | 0.0102 |
none | 0 | acc_norm | 0.4461 | ± | 0.0102 | ||
boolq | Yaml | none | 0 | acc | 0.6297 | ± | 0.0084 |
hellaswag | Yaml | none | 0 | acc | 0.3934 | ± | 0.0049 |
none | 0 | acc_norm | 0.4930 | ± | 0.0050 | ||
openbookqa | Yaml | none | 0 | acc | 0.2120 | ± | 0.0183 |
none | 0 | acc_norm | 0.3260 | ± | 0.0210 | ||
piqa | Yaml | none | 0 | acc | 0.6915 | ± | 0.0108 |
none | 0 | acc_norm | 0.6877 | ± | 0.0108 | ||
winogrande | Yaml | none | 0 | acc | 0.5714 | ± | 0.0139 |
Llamafactory EVAL
!CUDA_VISIBLE_DEVICES=0 python src/evaluate.py
--model_name_or_path Deathsquad10/TinyLlama-Remix
--template vanilla
--task mmlu
--split test
--lang en
--n_shot 5
--use_unsloth
--batch_size 1
Average: 26.29
STEM: 27.10
Social Sciences: 25.48
Humanities: 25.62
Other: 27.26
!CUDA_VISIBLE_DEVICES=0 python src/evaluate.py
--model_name_or_path Deathsquad10/TinyLlama-Remix
--template vanilla
--task cmmlu
--split test
--lang en
--n_shot 5
--use_unsloth
--batch_size 2
Average: 24.98
STEM: 25.52
Social Sciences: 24.70
Humanities: 24.59
Other: 25.19
https://github.com/jzhang38/TinyLlama
The TinyLlama project aims to pretrain a 1.1B Llama model on 3 trillion tokens. With some proper optimization, we can achieve this within a span of "just" 90 days using 16 A100-40G GPUs 🚀🚀. The training has started on 2023-09-01.
We adopted exactly the same architecture and tokenizer as Llama 2. This means TinyLlama can be plugged and played in many open-source projects built upon Llama. Besides, TinyLlama is compact with only 1.1B parameters. This compactness allows it to cater to a multitude of applications demanding a restricted computation and memory footprint.
This Model
This is the chat model finetuned on top of TinyLlama/TinyLlama-1.1B-intermediate-step-1431k-3T. We follow HF's Zephyr's training recipe. The model was " initially fine-tuned on a variant of the UltraChat
dataset, which contains a diverse range of synthetic dialogues generated by ChatGPT.
We then further aligned the model with 🤗 TRL's DPOTrainer
on the openbmb/UltraFeedback dataset, which contain 64k prompts and model completions that are ranked by GPT-4."
How to use
You will need the transformers>=4.34 Do check the TinyLlama github page for more information.
# Install transformers from source - only needed for versions <= v4.34
# pip install git+https://github.com/huggingface/transformers.git
# pip install accelerate
import torch
from transformers import pipeline
pipe = pipeline("text-generation", model="TinyLlama/TinyLlama-1.1B-Chat-v1.0", torch_dtype=torch.bfloat16, device_map="auto")
# We use the tokenizer's chat template to format each message - see https://huggingface.co/docs/transformers/main/en/chat_templating
messages = [
{
"role": "system",
"content": "You are a friendly chatbot who always responds in the style of a pirate",
},
{"role": "user", "content": "How many helicopters can a human eat in one sitting?"},
]
prompt = pipe.tokenizer.apply_chat_template(messages, tokenize=False, add_generation_prompt=True)
outputs = pipe(prompt, max_new_tokens=256, do_sample=True, temperature=0.7, top_k=50, top_p=0.95)
print(outputs[0]["generated_text"])
# <|system|>
# You are a friendly chatbot who always responds in the style of a pirate.</s>
# <|user|>
# How many helicopters can a human eat in one sitting?</s>
# <|assistant|>
# ...
- Downloads last month
- 888