|
--- |
|
language: |
|
- en |
|
license: apache-2.0 |
|
datasets: |
|
- cerebras/SlimPajama-627B |
|
- bigcode/starcoderdata |
|
- HuggingFaceH4/ultrachat_200k |
|
- HuggingFaceH4/ultrafeedback_binarized |
|
model-index: |
|
- name: TinyLlama-1.1B-Remix-V.2 |
|
results: |
|
- task: |
|
type: text-generation |
|
name: Text Generation |
|
dataset: |
|
name: AI2 Reasoning Challenge (25-Shot) |
|
type: ai2_arc |
|
config: ARC-Challenge |
|
split: test |
|
args: |
|
num_few_shot: 25 |
|
metrics: |
|
- type: acc_norm |
|
value: 33.19 |
|
name: normalized accuracy |
|
source: |
|
url: https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=Deathsquad10/TinyLlama-1.1B-Remix-V.2 |
|
name: Open LLM Leaderboard |
|
- task: |
|
type: text-generation |
|
name: Text Generation |
|
dataset: |
|
name: HellaSwag (10-Shot) |
|
type: hellaswag |
|
split: validation |
|
args: |
|
num_few_shot: 10 |
|
metrics: |
|
- type: acc_norm |
|
value: 56.62 |
|
name: normalized accuracy |
|
source: |
|
url: https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=Deathsquad10/TinyLlama-1.1B-Remix-V.2 |
|
name: Open LLM Leaderboard |
|
- task: |
|
type: text-generation |
|
name: Text Generation |
|
dataset: |
|
name: MMLU (5-Shot) |
|
type: cais/mmlu |
|
config: all |
|
split: test |
|
args: |
|
num_few_shot: 5 |
|
metrics: |
|
- type: acc |
|
value: 25.99 |
|
name: accuracy |
|
source: |
|
url: https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=Deathsquad10/TinyLlama-1.1B-Remix-V.2 |
|
name: Open LLM Leaderboard |
|
- task: |
|
type: text-generation |
|
name: Text Generation |
|
dataset: |
|
name: TruthfulQA (0-shot) |
|
type: truthful_qa |
|
config: multiple_choice |
|
split: validation |
|
args: |
|
num_few_shot: 0 |
|
metrics: |
|
- type: mc2 |
|
value: 34.64 |
|
source: |
|
url: https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=Deathsquad10/TinyLlama-1.1B-Remix-V.2 |
|
name: Open LLM Leaderboard |
|
- task: |
|
type: text-generation |
|
name: Text Generation |
|
dataset: |
|
name: Winogrande (5-shot) |
|
type: winogrande |
|
config: winogrande_xl |
|
split: validation |
|
args: |
|
num_few_shot: 5 |
|
metrics: |
|
- type: acc |
|
value: 58.09 |
|
name: accuracy |
|
source: |
|
url: https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=Deathsquad10/TinyLlama-1.1B-Remix-V.2 |
|
name: Open LLM Leaderboard |
|
- task: |
|
type: text-generation |
|
name: Text Generation |
|
dataset: |
|
name: GSM8k (5-shot) |
|
type: gsm8k |
|
config: main |
|
split: test |
|
args: |
|
num_few_shot: 5 |
|
metrics: |
|
- type: acc |
|
value: 0.91 |
|
name: accuracy |
|
source: |
|
url: https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=Deathsquad10/TinyLlama-1.1B-Remix-V.2 |
|
name: Open LLM Leaderboard |
|
--- |
|
<div align="center"> |
|
|
|
# TinyLlama-1.1B ---My personal Test update Version 2 |
|
</div> |
|
|
|
|
|
| Tasks |Version|Filter|n-shot| Metric |Value | |Stderr| |
|
|-------------|-------|------|-----:|--------|-----:|---|-----:| |
|
|arc_challenge|Yaml |none | 0|acc |0.2790|± |0.0131| |
|
| | |none | 0|acc_norm|0.3234|± |0.0137| |
|
|arc_easy |Yaml |none | 0|acc |0.6006|± |0.0101| |
|
| | |none | 0|acc_norm|0.5770|± |0.0101| |
|
|boolq |Yaml |none | 0|acc |0.6373|± |0.0084| |
|
|hellaswag |Yaml |none | 0|acc |0.4521|± |0.0050| |
|
| | |none | 0|acc_norm|0.5822|± |0.0049| |
|
|openbookqa |Yaml |none | 0|acc |0.2220|± |0.0186| |
|
| | |none | 0|acc_norm|0.3740|± |0.0217| |
|
|piqa |Yaml |none | 0|acc |0.7269|± |0.0104| |
|
| | |none | 0|acc_norm|0.7296|± |0.0104| |
|
|winogrande |Yaml |none | 0|acc |0.5754|± |0.0139| |
|
|
|
|
|
https://github.com/jzhang38/TinyLlama |
|
|
|
The TinyLlama project aims to **pretrain** a **1.1B Llama model on 3 trillion tokens**. With some proper optimization, we can achieve this within a span of "just" 90 days using 16 A100-40G GPUs 🚀🚀. The training has started on 2023-09-01. |
|
|
|
|
|
We adopted exactly the same architecture and tokenizer as Llama 2. This means TinyLlama can be plugged and played in many open-source projects built upon Llama. Besides, TinyLlama is compact with only 1.1B parameters. This compactness allows it to cater to a multitude of applications demanding a restricted computation and memory footprint. |
|
|
|
#### This Model |
|
This is the chat model finetuned on top of [TinyLlama/TinyLlama-1.1B-intermediate-step-1431k-3T](https://huggingface.co/TinyLlama/TinyLlama-1.1B-intermediate-step-1431k-3T). **We follow [HF's Zephyr](https://huggingface.co/HuggingFaceH4/zephyr-7b-alpha/edit/main/README.md)'s training recipe.** The model was " initially fine-tuned on a variant of the [`UltraChat`](https://huggingface.co/datasets/stingning/ultrachat) dataset, which contains a diverse range of synthetic dialogues generated by ChatGPT. |
|
We then further aligned the model with [🤗 TRL's](https://github.com/huggingface/trl) `DPOTrainer` on the [openbmb/UltraFeedback](https://huggingface.co/datasets/openbmb/UltraFeedback) dataset, which contain 64k prompts and model completions that are ranked by GPT-4." |
|
|
|
|
|
#### How to use |
|
You will need the transformers>=4.34 |
|
Do check the [TinyLlama](https://github.com/jzhang38/TinyLlama) github page for more information. |
|
|
|
```python |
|
# Install transformers from source - only needed for versions <= v4.34 |
|
# pip install git+https://github.com/huggingface/transformers.git |
|
# pip install accelerate |
|
import torch |
|
from transformers import pipeline |
|
pipe = pipeline("text-generation", model="TinyLlama/TinyLlama-1.1B-Chat-v1.0", torch_dtype=torch.bfloat16, device_map="auto") |
|
# We use the tokenizer's chat template to format each message - see https://huggingface.co/docs/transformers/main/en/chat_templating |
|
messages = [ |
|
{ |
|
"role": "system", |
|
"content": "You are a friendly chatbot who always responds in the style of a pirate", |
|
}, |
|
{"role": "user", "content": "How many helicopters can a human eat in one sitting?"}, |
|
] |
|
prompt = pipe.tokenizer.apply_chat_template(messages, tokenize=False, add_generation_prompt=True) |
|
outputs = pipe(prompt, max_new_tokens=256, do_sample=True, temperature=0.7, top_k=50, top_p=0.95) |
|
print(outputs[0]["generated_text"]) |
|
# <|system|> |
|
# You are a friendly chatbot who always responds in the style of a pirate.</s> |
|
# <|user|> |
|
# How many helicopters can a human eat in one sitting?</s> |
|
# <|assistant|> |
|
# ... |
|
``` |
|
# [Open LLM Leaderboard Evaluation Results](https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard) |
|
Detailed results can be found [here](https://huggingface.co/datasets/open-llm-leaderboard/details_Deathsquad10__TinyLlama-1.1B-Remix-V.2) |
|
|
|
| Metric |Value| |
|
|---------------------------------|----:| |
|
|Avg. |34.91| |
|
|AI2 Reasoning Challenge (25-Shot)|33.19| |
|
|HellaSwag (10-Shot) |56.62| |
|
|MMLU (5-Shot) |25.99| |
|
|TruthfulQA (0-shot) |34.64| |
|
|Winogrande (5-shot) |58.09| |
|
|GSM8k (5-shot) | 0.91| |
|
|
|
|