speecht5_finetuned_librispeech_polish_epo10_batch2_gas2

This model is a fine-tuned version of dawid511/speecht5_finetuned_librispeech_polish_epo6_batch8_gas4 on an unknown dataset. It achieves the following results on the evaluation set:

  • Loss: 0.3637

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 0.0001
  • train_batch_size: 2
  • eval_batch_size: 2
  • seed: 42
  • gradient_accumulation_steps: 2
  • total_train_batch_size: 4
  • optimizer: Use adamw_torch with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
  • lr_scheduler_type: linear
  • lr_scheduler_warmup_steps: 100
  • num_epochs: 10
  • mixed_precision_training: Native AMP

Training results

Training Loss Epoch Step Validation Loss
0.7279 0.2558 100 0.3734
0.7647 0.5115 200 0.3829
0.7646 0.7673 300 0.3793
0.7521 1.0230 400 0.3804
0.7673 1.2788 500 0.3817
0.7415 1.5345 600 0.3824
0.7721 1.7903 700 0.3960
0.7766 2.0460 800 0.3767
0.7529 2.3018 900 0.3756
0.757 2.5575 1000 0.3809
0.757 2.8133 1100 0.3808
0.746 3.0691 1200 0.3762
0.7424 3.3248 1300 0.3744
0.7409 3.5806 1400 0.3778
0.7453 3.8363 1500 0.3715
0.7409 4.0921 1600 0.3722
0.7441 4.3478 1700 0.3728
0.7304 4.6036 1800 0.3724
0.738 4.8593 1900 0.3710
0.7213 5.1151 2000 0.3730
0.7446 5.3708 2100 0.3721
0.7255 5.6266 2200 0.3684
0.7321 5.8824 2300 0.3671
0.7098 6.1381 2400 0.3673
0.7401 6.3939 2500 0.3735
0.7165 6.6496 2600 0.3679
0.714 6.9054 2700 0.3733
0.7035 7.1611 2800 0.3666
0.7089 7.4169 2900 0.3689
0.7118 7.6726 3000 0.3691
0.7064 7.9284 3100 0.3664
0.6994 8.1841 3200 0.3679
0.6958 8.4399 3300 0.3661
0.7087 8.6957 3400 0.3683
0.6968 8.9514 3500 0.3635
0.7035 9.2072 3600 0.3647
0.7045 9.4629 3700 0.3647
0.6982 9.7187 3800 0.3642
0.6996 9.9744 3900 0.3637

Framework versions

  • Transformers 4.47.1
  • Pytorch 2.5.1+cu121
  • Datasets 3.2.0
  • Tokenizers 0.21.0
Downloads last month
16
Safetensors
Model size
144M params
Tensor type
F32
·
Inference Examples
This model does not have enough activity to be deployed to Inference API (serverless) yet. Increase its social visibility and check back later, or deploy to Inference Endpoints (dedicated) instead.