adding Hausa BERT
Browse files- README.md +58 -0
- config.json +30 -0
- pytorch_model.bin +3 -0
- special_tokens_map.json +1 -0
- tokenizer_config.json +1 -0
- training_args.bin +3 -0
- vocab.txt +0 -0
README.md
ADDED
@@ -0,0 +1,58 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
Hugging Face's logo
|
2 |
+
---
|
3 |
+
language: yo
|
4 |
+
datasets:
|
5 |
+
|
6 |
+
---
|
7 |
+
# bert-base-multilingual-cased-finetuned-yoruba
|
8 |
+
## Model description
|
9 |
+
**bert-base-multilingual-cased-finetuned-yoruba** is a **Yoruba BERT** model obtained by fine-tuning **bert-base-multilingual-cased** model on Yorùbá language texts. It provides **better performance** than the multilingual BERT on text classification and named entity recognition datasets.
|
10 |
+
|
11 |
+
Specifically, this model is a *bert-base-multilingual-cased* model that was fine-tuned on Yorùbá corpus.
|
12 |
+
## Intended uses & limitations
|
13 |
+
#### How to use
|
14 |
+
You can use this model with Transformers *pipeline* for masked token prediction.
|
15 |
+
```python
|
16 |
+
>>> from transformers import pipeline
|
17 |
+
>>> unmasker = pipeline('fill-mask', model='Davlan/bert-base-multilingual-cased-finetuned-yoruba')
|
18 |
+
>>> unmasker("Arẹmọ Phillip to jẹ ọkọ [MASK] Elizabeth to ti wa lori aisan ti dagbere faye lẹni ọdun mọkandilọgọrun")
|
19 |
+
|
20 |
+
[{'sequence': '[CLS] Arẹmọ Phillip to jẹ ọkọ Mary Elizabeth to ti wa lori aisan ti dagbere faye lẹni ọdun mọkandilọgọrun [SEP]', 'score': 0.1738305538892746,
|
21 |
+
'token': 12176,
|
22 |
+
'token_str': 'Mary'},
|
23 |
+
{'sequence': '[CLS] Arẹmọ Phillip to jẹ ọkọ Queen Elizabeth to ti wa lori aisan ti dagbere faye lẹni ọdun mọkandilọgọrun [SEP]', 'score': 0.16382873058319092,
|
24 |
+
'token': 13704,
|
25 |
+
'token_str': 'Queen'},
|
26 |
+
{'sequence': '[CLS] Arẹmọ Phillip to jẹ ọkọ ti Elizabeth to ti wa lori aisan ti dagbere faye lẹni ọdun mọkandilọgọrun [SEP]', 'score': 0.13272495567798615,
|
27 |
+
'token': 14382,
|
28 |
+
'token_str': 'ti'},
|
29 |
+
{'sequence': '[CLS] Arẹmọ Phillip to jẹ ọkọ King Elizabeth to ti wa lori aisan ti dagbere faye lẹni ọdun mọkandilọgọrun [SEP]', 'score': 0.12823280692100525,
|
30 |
+
'token': 11515,
|
31 |
+
'token_str': 'King'},
|
32 |
+
{'sequence': '[CLS] Arẹmọ Phillip to jẹ ọkọ Lady Elizabeth to ti wa lori aisan ti dagbere faye lẹni ọdun mọkandilọgọrun [SEP]', 'score': 0.07841219753026962,
|
33 |
+
'token': 14005,
|
34 |
+
'token_str': 'Lady'}]
|
35 |
+
|
36 |
+
```
|
37 |
+
#### Limitations and bias
|
38 |
+
This model is limited by its training dataset of entity-annotated news articles from a specific span of time. This may not generalize well for all use cases in different domains.
|
39 |
+
## Training data
|
40 |
+
This model was fine-tuned on Bible, JW300, [Menyo-20k](https://huggingface.co/datasets/menyo20k_mt), [Yoruba Embedding corpus](https://huggingface.co/datasets/yoruba_text_c3) and [CC-Aligned](https://opus.nlpl.eu/), Wikipedia, news corpora (BBC Yoruba, VON Yoruba, Asejere, Alaroye), and other small datasets curated from friends.
|
41 |
+
|
42 |
+
## Training procedure
|
43 |
+
This model was trained on a single NVIDIA V100 GPU
|
44 |
+
|
45 |
+
## Eval results on Test set (F-score)
|
46 |
+
Dataset|F1-score
|
47 |
+
-|-
|
48 |
+
Yoruba GV NER |75.34
|
49 |
+
MasakhaNER |80.82
|
50 |
+
BBC Yoruba |80.66
|
51 |
+
|
52 |
+
### BibTeX entry and citation info
|
53 |
+
By David Adelani
|
54 |
+
```
|
55 |
+
|
56 |
+
```
|
57 |
+
|
58 |
+
|
config.json
ADDED
@@ -0,0 +1,30 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"_name_or_path": "hau_bert/checkpoint-200000",
|
3 |
+
"architectures": [
|
4 |
+
"BertForMaskedLM"
|
5 |
+
],
|
6 |
+
"attention_probs_dropout_prob": 0.1,
|
7 |
+
"directionality": "bidi",
|
8 |
+
"gradient_checkpointing": false,
|
9 |
+
"hidden_act": "gelu",
|
10 |
+
"hidden_dropout_prob": 0.1,
|
11 |
+
"hidden_size": 768,
|
12 |
+
"initializer_range": 0.02,
|
13 |
+
"intermediate_size": 3072,
|
14 |
+
"layer_norm_eps": 1e-12,
|
15 |
+
"max_position_embeddings": 512,
|
16 |
+
"model_type": "bert",
|
17 |
+
"num_attention_heads": 12,
|
18 |
+
"num_hidden_layers": 12,
|
19 |
+
"pad_token_id": 0,
|
20 |
+
"pooler_fc_size": 768,
|
21 |
+
"pooler_num_attention_heads": 12,
|
22 |
+
"pooler_num_fc_layers": 3,
|
23 |
+
"pooler_size_per_head": 128,
|
24 |
+
"pooler_type": "first_token_transform",
|
25 |
+
"position_embedding_type": "absolute",
|
26 |
+
"transformers_version": "4.4.2",
|
27 |
+
"type_vocab_size": 2,
|
28 |
+
"use_cache": true,
|
29 |
+
"vocab_size": 119547
|
30 |
+
}
|
pytorch_model.bin
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:fc4868ac260b22c68a5cd4368c98ff089bab954797f6829eaff9e6f03cd80cad
|
3 |
+
size 711988242
|
special_tokens_map.json
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
{"unk_token": "[UNK]", "sep_token": "[SEP]", "pad_token": "[PAD]", "cls_token": "[CLS]", "mask_token": "[MASK]"}
|
tokenizer_config.json
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
{"do_lower_case": false, "unk_token": "[UNK]", "sep_token": "[SEP]", "pad_token": "[PAD]", "cls_token": "[CLS]", "mask_token": "[MASK]", "tokenize_chinese_chars": true, "strip_accents": null, "model_max_length": 512, "special_tokens_map_file": null, "name_or_path": "bert-base-multilingual-cased"}
|
training_args.bin
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:bb2fc5750e5ebf61ba7614dfb6cecaf5d66c130ba8978770279f682fdc7eb348
|
3 |
+
size 2287
|
vocab.txt
ADDED
The diff for this file is too large to render.
See raw diff
|
|