YAML Metadata Warning: empty or missing yaml metadata in repo card (https://huggingface.co/docs/hub/model-cards#model-card-metadata)

Hugging Face's logo

language: ha datasets:


bert-base-multilingual-cased-finetuned-hausa

Model description

bert-base-multilingual-cased-finetuned-hausa is a Hausa BERT model obtained by fine-tuning bert-base-multilingual-cased model on Hausa language texts. It provides better performance than the multilingual BERT on text classification and named entity recognition datasets.

Specifically, this model is a bert-base-multilingual-cased model that was fine-tuned on Hausa corpus.

Intended uses & limitations

How to use

You can use this model with Transformers pipeline for masked token prediction.

>>> from transformers import pipeline
>>> unmasker = pipeline('fill-mask', model='Davlan/bert-base-multilingual-cased-finetuned-hausa')
>>> unmasker("Shugaban [MASK] Muhammadu Buhari ya amince da shawarar da ma’aikatar sufuri karkashin jagoranci")
                    
[{'sequence': 
'[CLS] Shugaban Nigeria Muhammadu Buhari ya amince da shawarar da ma [UNK] aikatar sufuri karkashin jagoranci [SEP]', 
'score': 0.9762618541717529, 
'token': 22045, 
'token_str': 'Nigeria'}, 
{'sequence': '[CLS] Shugaban Ka Muhammadu Buhari ya amince da shawarar da ma [UNK] aikatar sufuri karkashin jagoranci [SEP]', 'score': 0.007239189930260181, 
'token': 25444, 
'token_str': 'Ka'}, 
{'sequence': '[CLS] Shugaban, Muhammadu Buhari ya amince da shawarar da ma [UNK] aikatar sufuri karkashin jagoranci [SEP]', 'score': 0.001990817254409194, 
'token': 117, 
'token_str': ','}, 
{'sequence': '[CLS] Shugaban Ghana Muhammadu Buhari ya amince da shawarar da ma [UNK] aikatar sufuri karkashin jagoranci [SEP]', 'score': 0.001566368737258017, 
'token': 28682, 
'token_str': 'Ghana'}, 
{'sequence': '[CLS] Shugabanmu Muhammadu Buhari ya amince da shawarar da ma [UNK] aikatar sufuri karkashin jagoranci [SEP]', 'score': 0.0009375187801197171, 
'token': 11717, 
'token_str': '##mu'}]

Limitations and bias

This model is limited by its training dataset of entity-annotated news articles from a specific span of time. This may not generalize well for all use cases in different domains.

Training data

This model was fine-tuned on Hausa CC-100

Training procedure

This model was trained on a single NVIDIA V100 GPU

Eval results on Test set (F-score, average over 5 runs)

Dataset mBERT F1 ha_bert F1
MasakhaNER 86.65 91.31
VOA Hausa Textclass 84.76 90.98

BibTeX entry and citation info

By David Adelani


Downloads last month
11
Inference Examples
This model does not have enough activity to be deployed to Inference API (serverless) yet. Increase its social visibility and check back later, or deploy to Inference Endpoints (dedicated) instead.

Model tree for Davlan/bert-base-multilingual-cased-finetuned-hausa

Finetunes
1 model