概要
elyza/Llama-3-ELYZA-JP-8Bを元にchat vectorを用いて改良しAItuberに特化させました。 gemini-proによる自動評価でそこそこ強いです(elyza-task100で3.81点)
また、当モデルの特徴としてハルシネーション率が5%以下という高い安定性と高性能の両立が挙げられます。
how to use
import torch
from transformers import AutoModelForCausalLM, AutoTokenizer
DEFAULT_SYSTEM_PROMPT = "あなたは誠実で優秀な日本人のアシスタントです。特に指示が無い場合は、常に日本語で回答してください。"
text = "優秀なAIとはなんですか? またあなたの考える優秀なAIに重要なポイントを5つ挙げて下さい。"
model_name = "DataPilot/Llama3-ArrowSE-8B-v0.3"
tokenizer = AutoTokenizer.from_pretrained(model_name)
model = AutoModelForCausalLM.from_pretrained(
model_name,
torch_dtype="auto",
device_map="auto",
)
model.eval()
messages = [
{"role": "system", "content": DEFAULT_SYSTEM_PROMPT},
{"role": "user", "content": text},
]
prompt = tokenizer.apply_chat_template(
messages,
tokenize=False,
add_generation_prompt=True
)
token_ids = tokenizer.encode(
prompt, add_special_tokens=False, return_tensors="pt"
)
with torch.no_grad():
output_ids = model.generate(
token_ids.to(model.device),
max_new_tokens=1200,
do_sample=True,
temperature=0.6,
top_p=0.9,
)
output = tokenizer.decode(
output_ids.tolist()[0][token_ids.size(1):], skip_special_tokens=True
)
print(output)
- Downloads last month
- 235
This model does not have enough activity to be deployed to Inference API (serverless) yet. Increase its social
visibility and check back later, or deploy to Inference Endpoints (dedicated)
instead.