metadata
license: apache-2.0
概要
当モデルはMistral系のArrowPro-7B-KUJIRAをもとにdatabricks-dolly-15k-Nyan-jaを用いて語尾を「にゃん!」にするファインチューニングを実施したモデルとなります。
How to use
import torch
from transformers import AutoTokenizer, AutoModelForCausalLM
tokenizer = AutoTokenizer.from_pretrained("DataPilot/ArrowPro-7B-Nyan")
model = AutoModelForCausalLM.from_pretrained(
"DataPilot/ArrowPro-7B-Nyan",
torch_dtype="auto",
)
model.eval()
if torch.cuda.is_available():
model = model.to("cuda")
def build_prompt(user_query):
sys_msg = "あなたは日本語を話す優秀なアシスタントです。回答には必ず日本語で答えてください。"
template = """[INST] <<SYS>>
{}
<</SYS>>
{}[/INST]"""
return template.format(sys_msg,user_query)
# Infer with prompt without any additional input
user_inputs = {
"user_query": "まどマギで一番かわいいキャラはだれ?",
}
prompt = build_prompt(**user_inputs)
input_ids = tokenizer.encode(
prompt,
add_special_tokens=True,
return_tensors="pt"
)
tokens = model.generate(
input_ids.to(device=model.device),
max_new_tokens=500,
temperature=1,
top_p=0.95,
do_sample=True,
)
out = tokenizer.decode(tokens[0][input_ids.shape[1]:], skip_special_tokens=True).strip()
print(out)
謝辞
このモデルを作成するために計算資源を貸してくれたwitness氏とMeta Data Labに感謝を申し上げます
お願い
このモデルを利用する際は他人に迷惑をかけないように最大限留意してください。