DarshanDeshpande's picture
distilbert_social_reasoning_reward_model
bdeb961 verified
|
raw
history blame
2.26 kB
metadata
license: apache-2.0
base_model: distilbert/distilbert-base-uncased
tags:
  - trl
  - reward-trainer
  - generated_from_trainer
metrics:
  - accuracy
model-index:
  - name: distilbert_social_reasoning_reward_model
    results: []

distilbert_social_reasoning_reward_model

This model is a fine-tuned version of distilbert/distilbert-base-uncased on an unknown dataset. It achieves the following results on the evaluation set:

  • Loss: 0.6309
  • Accuracy: 0.6958

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 0.0005
  • train_batch_size: 16
  • eval_batch_size: 16
  • seed: 42
  • gradient_accumulation_steps: 4
  • total_train_batch_size: 64
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: cosine
  • lr_scheduler_warmup_steps: 10
  • num_epochs: 3

Training results

Training Loss Epoch Step Validation Loss Accuracy
0.6618 0.24 10 0.6505 0.6725
0.6357 0.48 20 0.6373 0.6497
0.6457 0.72 30 0.6226 0.6725
0.646 0.96 40 0.6437 0.6778
0.6448 1.2 50 0.7565 0.6287
0.6339 1.44 60 0.6365 0.6655
0.6207 1.68 70 0.6694 0.6778
0.6217 1.92 80 0.6351 0.6340
0.5928 2.16 90 0.7245 0.6497
0.5938 2.4 100 0.6739 0.6497
0.5873 2.63 110 0.6811 0.6357
0.5442 2.87 120 0.6774 0.6375

Framework versions

  • Transformers 4.38.2
  • Pytorch 2.2.1+cu121
  • Datasets 2.18.0
  • Tokenizers 0.15.2