ppo-LunarLander-v2 / config.json
DarkRodry's picture
change hyperparameters to improve the model
2d4f530
{"policy_class": {":type:": "<class 'abc.ABCMeta'>", ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==", "__module__": "stable_baselines3.common.policies", "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ", "__init__": "<function ActorCriticPolicy.__init__ at 0x7f395d1b2950>", "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7f395d1b29e0>", "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7f395d1b2a70>", "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7f395d1b2b00>", "_build": "<function ActorCriticPolicy._build at 0x7f395d1b2b90>", "forward": "<function ActorCriticPolicy.forward at 0x7f395d1b2c20>", "extract_features": "<function ActorCriticPolicy.extract_features at 0x7f395d1b2cb0>", "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7f395d1b2d40>", "_predict": "<function ActorCriticPolicy._predict at 0x7f395d1b2dd0>", "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7f395d1b2e60>", "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7f395d1b2ef0>", "predict_values": "<function ActorCriticPolicy.predict_values at 0x7f395d1b2f80>", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc._abc_data object at 0x7f395d1ae9c0>"}, "verbose": 1, "policy_kwargs": {}, "num_timesteps": 2031616, "_total_timesteps": 2000000, "_num_timesteps_at_start": 0, "seed": null, "action_noise": null, "start_time": 1687520678720635120, "learning_rate": 0.0003, "tensorboard_log": null, "_last_obs": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVdQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYAAgAAAAAAABoPOj3rtQ8/lZJSutJfPL8yOjg9RqaJvAAAAAAAAAAAMzRzPbgBuj+tx/o+d9MZPVHgKj0idYU+AAAAAAAAAADNaQu9exqnus8iRr0av58vSlh7ulZzvTMAAIA/AACAPzBGVr59Mgg+ntnrPq7HA78JYBK+u8vJPgAAAAAAAAAAgI8LvcMBW7pYHFW1VJqUsNLShbqqk3o0AACAPwAAgD8zf+28D5dovMTpyj1wja28cuy4va8fl70AAIA/AACAP7Iegr4k6Ls+Im4aPnTEHr8u4dq+1bw0PgAAAAAAAAAA4I4uPtDA7z7kbjS+BLIav/huLD6/wkG+AAAAAAAAAABA4SS+muUVPpp48D4Q57S+fCquPIp4oT4AAAAAAAAAAJoRRTtSCqO76DCVO0UftTyFo+k8RYiYvQAAgD8AAIA/ZthwPKx40D4VDjK8IAUgv2Mj7jwlB/u8AAAAAAAAAAAz6RA81yMVOHvkg7xbSwixLREBu4YQdrMAAIA/AACAP5ra8r0uN4U/pv2xvpsPS7+hH1S+/vYovgAAAAAAAAAAIIUTPo+AhD+uM9k+LFcfvziGhz5QfXw+AAAAAAAAAACaq1Y8eqKYPvPTYb3f3RW/QFbuuRyYKr0AAAAAAAAAAI1cor2SxfA8wj7LPmXoeL4bomo+CVmDPQAAAAAAAAAAlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksQSwiGlIwBQ5R0lFKULg=="}, "_last_episode_starts": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVgwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSxCFlIwBQ5R0lFKULg=="}, "_last_original_obs": null, "_episode_num": 0, "use_sde": false, "sde_sample_freq": -1, "_current_progress_remaining": -0.015808000000000044, "_stats_window_size": 100, "ep_info_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWV4QsAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpRHQHJ8zyz5XU+MAWyUS8qMAXSUR0C9uTHdKujidX2UKGgGR0BxSYBeXzDoaAdLzmgIR0C9uTTX4CZGdX2UKGgGR0ByjKM98qnWaAdLw2gIR0C9uTstkFwDdX2UKGgGR0BxS2r4nF5waAdLtWgIR0C9uU4wAU+LdX2UKGgGR0Bw4xmnO0LMaAdLq2gIR0C9uVISQHRkdX2UKGgGR0BxGXtx+8XfaAdLoWgIR0C9uWWD15B1dX2UKGgGR0BxdkNOM2m6aAdLsGgIR0C9uYRtP558dX2UKGgGR0BvTahrWRRuaAdLsGgIR0C9uaCyIHkcdX2UKGgGR0BwUkR7JGONaAdLwWgIR0C9uagc5sCUdX2UKGgGR0By8VL9MsYmaAdLy2gIR0C9uc6QvHtGdX2UKGgGR0BzUjssxwhoaAdLzWgIR0C9uecAWBSUdX2UKGgGR0BxjSkj5bhWaAdLpmgIR0C9ufxnjABUdX2UKGgGR0Bv8dJQLux9aAdLnmgIR0C9uf7YPGyYdX2UKGgGR0Bw3zO+qR2baAdLsGgIR0C9ugkBjnV5dX2UKGgGR0BxxBIFvAGjaAdLk2gIR0C9uhNjG1hLdX2UKGgGR0BzzjexfOUuaAdL3mgIR0C9ui1ea8YidX2UKGgGR0BzOCo/A0sOaAdL0GgIR0C9ujFOsT37dX2UKGgGR0ByosjFAE+xaAdLx2gIR0C9ujYLw4KhdX2UKGgGR0Bw40d+5OJtaAdLv2gIR0C9ujU3Ov+wdX2UKGgGR0Bzb9ZaFEiMaAdLsWgIR0C9ujeMZP2xdX2UKGgGR0Bw057PY4ACaAdLtGgIR0C9ulTF+/g0dX2UKGgGR0BwIlTAFgUlaAdLxWgIR0C9uokZ75VPdX2UKGgGR0Bx6Pw+dK/VaAdLt2gIR0C9upj2FnIydX2UKGgGR0ByrGySmqHXaAdNEwFoCEdAvbqbKSxJNHV9lChoBkdAcWL0HhS9/WgHS9BoCEdAvbqzZOBUaXV9lChoBkdAcqFlVLi++WgHS7VoCEdAvbq75ULlWHV9lChoBkdAc6AkGRmseWgHS8ZoCEdAvbrporWiDnV9lChoBkdAceZdPLxI8WgHS7toCEdAvbr+YD1XeXV9lChoBkdAcHK+I/JNkGgHS51oCEdAvbr+oZQ53nV9lChoBkdAcYwbA1vVE2gHS8hoCEdAvbsFbA1vVHV9lChoBkdAcfu4ptrKvGgHS71oCEdAvbsMNZvDQHV9lChoBkdAc+jaSs8xK2gHS9doCEdAvbsWw5eZ5XV9lChoBkdAcOwU/OdGzGgHS7RoCEdAvbsgAYHgP3V9lChoBkdAcQ31lXiiqWgHS7RoCEdAvbsibgCOm3V9lChoBkdAcpqT3IuGsWgHS7xoCEdAvbsjR2KVIXV9lChoBkdAc+kvgm7aqWgHS8doCEdAvbs4Tj/+9HV9lChoBkdAckboWpIczmgHS8doCEdAvbtWreZXuHV9lChoBkdAb+lVT72tdWgHS65oCEdAvbtpoIv8InV9lChoBkdAcNotG/etS2gHS7VoCEdAvbuA6S1VpHV9lChoBkdAcboJ9AooeGgHS7VoCEdAvbuC+7Dl5nV9lChoBkdAb9eaKDTScGgHS6ZoCEdAvbuOSIP9UHV9lChoBkdAcHX/GlyimGgHS6doCEdAvbu/AUL2H3V9lChoBkdAcozUF0PpZGgHS9JoCEdAvbvB3KSxJXV9lChoBkdAcXnoYekpJGgHS5hoCEdAvbvJGQSzxHV9lChoBkdAcx25CngpB2gHS7ZoCEdAvbvp68g6l3V9lChoBkdAcbLxJNCZ4WgHS5xoCEdAvbvsF/x2CHV9lChoBkdAcgSfAsTWXmgHS8RoCEdAvbv7Q+lj3HV9lChoBkdAcRF/r0J4S2gHS7FoCEdAvbwEXXRPXXV9lChoBkdAcsgUDdP+GWgHS81oCEdAvbwTkGRmsnV9lChoBkdAcAhXvYvnKWgHS5JoCEdAvbwVCQcPv3V9lChoBkdAdE6OVPepGWgHS91oCEdAvbwxh7Vrh3V9lChoBkdAc0XLmZE2HmgHS95oCEdAvbw/fWMCLnV9lChoBkdAbxaSNfgJkWgHS6doCEdAvbxCouPFN3V9lChoBkdAcgxlGwzLwGgHS9toCEdAvbxQyk9EC3V9lChoBkdAc8ebIcR15mgHS7ZoCEdAvbxr531SO3V9lChoBkdAcKAZtvXK82gHS8BoCEdAvbyGy2QXAXV9lChoBkdAc5/MpPRAr2gHS8loCEdAvbyGX5WRzXV9lChoBkdAcG4Qm/nGKmgHS5hoCEdAvbyozCUHIXV9lChoBkdAcDtRbr1M/WgHS7VoCEdAvbyuovSMLnV9lChoBkdAc/QRA8jiXWgHS7xoCEdAvbyycbzbvnV9lChoBkdAce1slb/wRWgHS8loCEdAvbzB7v5P/XV9lChoBkdAcaNnA6+36WgHS59oCEdAvbzEfgaWHHV9lChoBkdAccwiFj/dZmgHS59oCEdAvbzMkX1rZnV9lChoBkdAcZzUExIrfGgHS7NoCEdAvbzNxVAAyXV9lChoBkdAcbbGlANXo2gHS6toCEdAvbzntw71ZnV9lChoBkdAcYFmgrYoRmgHS7doCEdAvbz2kcjqwHV9lChoBkdAcAQPj4pMH2gHS6JoCEdAvbz5NWU8m3V9lChoBkdAcVtCQLeANGgHS7xoCEdAvb0mQXAM2HV9lChoBkdAch4ZElVtGmgHS71oCEdAvb0q4EwFknV9lChoBkdAcDPB3iaRZGgHS8poCEdAvb1LFjurqHV9lChoBkdAdFAVp9JBgWgHS7VoCEdAvb1MAQxvenV9lChoBkdAcinJfYzzmWgHS6BoCEdAvb1wkka/AXV9lChoBkdAcYxG9pRGdGgHS7toCEdAvb1wl0HQhXV9lChoBkdAcYeYxcmjTWgHS9FoCEdAvb2M7ihnJ3V9lChoBkdAcbHibDuSfWgHS7JoCEdAvb2xJjDsMXV9lChoBkdAc40gwXZXdWgHS8xoCEdAvb2zfJmuknV9lChoBkdAcaKNedCmdmgHS8poCEdAvb3E6ltTDXV9lChoBkdAcpl2hZha1WgHS9hoCEdAvb3HU1AJLXV9lChoBkdAcgiYT0xubmgHS9ZoCEdAvb3Wx2SuAHV9lChoBkdAcw0phnanJmgHS69oCEdAvb3gL+glGHV9lChoBkdAc8Tews5GSmgHS+RoCEdAvb3xRl6JInV9lChoBkdAc6EyCnP3SWgHS+JoCEdAvb4fLns9jnV9lChoBkdAciBNT987ZGgHS/BoCEdAvb4gjv/ipHV9lChoBkdAcl/qlxffGmgHS6hoCEdAvb4r6guh9XV9lChoBkdAcYpF2mpEQWgHS9BoCEdAvb5AhY/3WXV9lChoBkdAdAsoMa0hNmgHS9xoCEdAvb5MpSaVlnV9lChoBkdAb578DSw4bWgHS6poCEdAvb5T5ckdFXV9lChoBkdAc49F6AvtdGgHS9JoCEdAvb5lGNJe3XV9lChoBkdAdA7078vVVmgHS7poCEdAvb5pJYkmhXV9lChoBkdAcL3V6eGwimgHS7doCEdAvb5/QRf4RHV9lChoBkdAcFwNAkcCHWgHS6JoCEdAvb6ZpFkQPXV9lChoBkdAcn1bnHNorWgHS5ZoCEdAvb6alnAZbnV9lChoBkdAciQMnqmj02gHS7loCEdAvb6lxrBTGnV9lChoBkdAc76V2Rq46WgHS89oCEdAvb7AyTINmXV9lChoBkdAb77El3QlbGgHS6NoCEdAvb7HcXWOInV9lChoBkdAcw5FXq7iAGgHS7VoCEdAvb7NlZowmHV9lChoBkdAcueYB/7SA2gHS9JoCEdAvb7XHNorWnV9lChoBkdAciVRlHz6J2gHS6ZoCEdAvb74SsbNr3V9lChoBkdAb7vL8rI5pGgHS6ZoCEdAvb75oSL613V9lChoBkdAcbDVAAyVOmgHS6BoCEdAvb8QMgEEDHVlLg=="}, "ep_success_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 620, "observation_space": {":type:": "<class 'gymnasium.spaces.box.Box'>", ":serialized:": "gAWVcAIAAAAAAACMFGd5bW5hc2l1bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMDWJvdW5kZWRfYmVsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWCAAAAAAAAAABAQEBAQEBAZRoB4wCYjGUiYiHlFKUKEsDjAF8lE5OTkr/////Sv////9LAHSUYksIhZSMAUOUdJRSlIwNYm91bmRlZF9hYm92ZZRoECiWCAAAAAAAAAABAQEBAQEBAZRoFEsIhZRoGHSUUpSMBl9zaGFwZZRLCIWUjANsb3eUaBAoliAAAAAAAAAAAAC0wgAAtMIAAKDAAACgwNsPScAAAKDAAAAAgAAAAICUaApLCIWUaBh0lFKUjARoaWdolGgQKJYgAAAAAAAAAAAAtEIAALRCAACgQAAAoEDbD0lAAACgQAAAgD8AAIA/lGgKSwiFlGgYdJRSlIwIbG93X3JlcHKUjFtbLTkwLiAgICAgICAgLTkwLiAgICAgICAgIC01LiAgICAgICAgIC01LiAgICAgICAgIC0zLjE0MTU5MjcgIC01LgogIC0wLiAgICAgICAgIC0wLiAgICAgICBdlIwJaGlnaF9yZXBylIxTWzkwLiAgICAgICAgOTAuICAgICAgICAgNS4gICAgICAgICA1LiAgICAgICAgIDMuMTQxNTkyNyAgNS4KICAxLiAgICAgICAgIDEuICAgICAgIF2UjApfbnBfcmFuZG9tlE51Yi4=", "dtype": "float32", "bounded_below": "[ True True True True True True True True]", "bounded_above": "[ True True True True True True True True]", "_shape": [8], "low": "[-90. -90. -5. -5. -3.1415927 -5.\n -0. -0. ]", "high": "[90. 90. 5. 5. 3.1415927 5.\n 1. 1. ]", "low_repr": "[-90. -90. -5. -5. -3.1415927 -5.\n -0. -0. ]", "high_repr": "[90. 90. 5. 5. 3.1415927 5.\n 1. 1. ]", "_np_random": null}, "action_space": {":type:": "<class 'gymnasium.spaces.discrete.Discrete'>", ":serialized:": "gAWV1QAAAAAAAACMGWd5bW5hc2l1bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCaTiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIBAAAAAAAAACUhpRSlIwFc3RhcnSUaAhoDkMIAAAAAAAAAACUhpRSlIwGX3NoYXBllCloCmgOjApfbnBfcmFuZG9tlE51Yi4=", "n": "4", "start": "0", "_shape": [], "dtype": "int64", "_np_random": null}, "n_envs": 16, "n_steps": 2048, "gamma": 0.999, "gae_lambda": 0.96, "ent_coef": 0.01, "vf_coef": 0.5, "max_grad_norm": 0.5, "batch_size": 64, "n_epochs": 10, "clip_range": {":type:": "<class 'function'>", ":serialized:": "gAWVxQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSS91c3IvbG9jYWwvbGliL3B5dGhvbjMuMTAvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuEQwIEAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjEwL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaB99lH2UKGgWaA2MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz/JmZmZmZmahZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"}, "clip_range_vf": null, "normalize_advantage": true, "target_kl": null, "lr_schedule": {":type:": "<class 'function'>", ":serialized:": "gAWVxQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSS91c3IvbG9jYWwvbGliL3B5dGhvbjMuMTAvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuEQwIEAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjEwL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaB99lH2UKGgWaA2MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz8zqSowVTJhhZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"}, "system_info": {"OS": "Linux-5.15.107+-x86_64-with-glibc2.31 # 1 SMP Sat Apr 29 09:15:28 UTC 2023", "Python": "3.10.12", "Stable-Baselines3": "2.0.0a5", "PyTorch": "2.0.1+cu118", "GPU Enabled": "True", "Numpy": "1.22.4", "Cloudpickle": "2.2.1", "Gymnasium": "0.28.1", "OpenAI Gym": "0.25.2"}}