PPO Agent playing LunarLander-v2
This is a trained model of a PPO agent playing LunarLander-v2 using the stable-baselines3 library.
Usage (with Stable-baselines3)
TODO: Add your code
from stable_baselines3 import PPO
from stable_baselines3.common.env_util import make_vec_env
from stable_baselines3.common.evaluation import evaluate_policy
from huggingface_sb3 import load_from_hub
# Download the model checkpoint
repo_id = "DarkRodry/ppo-LunarLander-v2"
filename = "base_tutorial_model.zip"
model_checkpoint = load_from_hub(repo_id, filename)
# Create a vectorized environment
env = make_vec_env("LunarLander-v2", n_envs=1)
# Load the model
model = PPO.load(model_checkpoint, env=env)
# Evaluate
print("Evaluating model")
mean_reward, std_reward = evaluate_policy(
model,
env,
n_eval_episodes=30,
deterministic=True,
)
print(f"Mean reward = {mean_reward:.2f} +/- {std_reward}")
- Downloads last month
- 0
Evaluation results
- mean_reward on LunarLander-v2self-reported290.68 +/- 24.32