|
--- |
|
language: |
|
- en |
|
license: mit |
|
base_model: microsoft/deberta-v3-small |
|
tags: |
|
- nycu-112-2-datamining-hw2 |
|
- generated_from_trainer |
|
datasets: |
|
- DandinPower/review_onlytitleandtext |
|
metrics: |
|
- accuracy |
|
model-index: |
|
- name: deberta-v3-small-otat-recommened-hp |
|
results: |
|
- task: |
|
name: Text Classification |
|
type: text-classification |
|
dataset: |
|
name: DandinPower/review_onlytitleandtext |
|
type: DandinPower/review_onlytitleandtext |
|
metrics: |
|
- name: Accuracy |
|
type: accuracy |
|
value: 0.6228571428571429 |
|
--- |
|
|
|
<!-- This model card has been generated automatically according to the information the Trainer had access to. You |
|
should probably proofread and complete it, then remove this comment. --> |
|
|
|
# deberta-v3-small-otat-recommened-hp |
|
|
|
This model is a fine-tuned version of [microsoft/deberta-v3-small](https://huggingface.co/microsoft/deberta-v3-small) on the DandinPower/review_onlytitleandtext dataset. |
|
It achieves the following results on the evaluation set: |
|
- Loss: 1.6500 |
|
- Accuracy: 0.6229 |
|
- Macro F1: 0.6240 |
|
|
|
## Model description |
|
|
|
More information needed |
|
|
|
## Intended uses & limitations |
|
|
|
More information needed |
|
|
|
## Training and evaluation data |
|
|
|
More information needed |
|
|
|
## Training procedure |
|
|
|
### Training hyperparameters |
|
|
|
The following hyperparameters were used during training: |
|
- learning_rate: 4.5e-05 |
|
- train_batch_size: 16 |
|
- eval_batch_size: 16 |
|
- seed: 42 |
|
- gradient_accumulation_steps: 4 |
|
- total_train_batch_size: 64 |
|
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 |
|
- lr_scheduler_type: linear |
|
- lr_scheduler_warmup_steps: 1500 |
|
- num_epochs: 10 |
|
|
|
### Training results |
|
|
|
| Training Loss | Epoch | Step | Validation Loss | Accuracy | Macro F1 | |
|
|:-------------:|:-----:|:----:|:---------------:|:--------:|:--------:| |
|
| 0.8942 | 1.14 | 500 | 0.8753 | 0.6316 | 0.6330 | |
|
| 0.7816 | 2.29 | 1000 | 0.8880 | 0.633 | 0.6216 | |
|
| 0.7231 | 3.43 | 1500 | 0.8827 | 0.632 | 0.6322 | |
|
| 0.6145 | 4.57 | 2000 | 0.9674 | 0.6369 | 0.6329 | |
|
| 0.4694 | 5.71 | 2500 | 1.0903 | 0.6249 | 0.6200 | |
|
| 0.3611 | 6.86 | 3000 | 1.2490 | 0.6216 | 0.6249 | |
|
| 0.278 | 8.0 | 3500 | 1.4194 | 0.6201 | 0.6230 | |
|
| 0.1689 | 9.14 | 4000 | 1.6500 | 0.6229 | 0.6240 | |
|
|
|
|
|
### Framework versions |
|
|
|
- Transformers 4.39.3 |
|
- Pytorch 2.2.2+cu121 |
|
- Datasets 2.18.0 |
|
- Tokenizers 0.15.2 |
|
|