metadata
base_model: arcee-ai/Meraj-Mini
tags:
- text-generation-inference
- transformers
- unsloth
- qwen2
- trl
license: apache-2.0
language:
- ar
- en
Bilingual Assistant Model Card
Overview
This bilingual language model is designed to support seamless text generation and understanding in both Arabic (ar) and English (en). Fine-tuned from the arcee-ai/Meraj-Mini
base model, it offers robust multilingual capabilities optimized for various applications such as conversational agents, content creation, and multilingual text analysis.
Key Highlights
- Multilingual Proficiency: Designed to handle complex linguistic nuances in both Arabic and English, ensuring high-quality outputs in both languages.
- Performance Optimization: Achieved 2x faster training through innovative methods provided by the Unsloth framework and the Hugging Face TRL library.
- Transformer-Based Architecture: Utilizes advanced transformer layers to deliver state-of-the-art performance in text generation and inference.
Development Details
- Developer: Daemontatox
- License: Licensed under the Apache-2.0, ensuring open accessibility and flexibility for various use cases.
- Base Model: The model is a fine-tuned variant of
arcee-ai/Meraj-Mini
. - Frameworks Used:
- Unsloth: Enabled faster and more efficient training.
- Hugging Face TRL Library: Provided tools for reinforcement learning fine-tuning, enhancing model responsiveness and accuracy.
Training Process
The fine-tuning process was conducted with a focus on:
- Data Diversity: Leveraged a bilingual corpus to ensure comprehensive language understanding across both supported languages.
- Optimized Hardware Utilization: Implemented Unsloth's accelerated training methods, significantly reducing resource consumption and training time.
- Reinforcement Learning: Used Hugging Face's TRL library to fine-tune the model's decision-making and response generation capabilities, particularly for conversational and contextual understanding.
Applications
This model is suited for a variety of real-world applications, including:
- Conversational Agents: Powering bilingual chatbots and virtual assistants for customer support and personal use.
- Content Generation: Assisting in drafting multilingual articles, social media posts, and creative writing.
- Translation Support: Providing context-aware translations and summaries across Arabic and English.
- Education: Enhancing learning platforms by offering bilingual educational content and interactive learning experiences.
Future Directions
Plans for extending the model's capabilities include:
- Additional Language Support: Exploring fine-tuning for additional languages.
- Domain-Specific Training: Specializing the model for industries such as healthcare, legal, and technical writing.
- Optimization for Edge Devices: Investigating quantization techniques to deploy the model on resource-constrained hardware like mobile devices and IoT platforms.
For more information and updates, visit the Unsloth GitHub Repository.