Edit model card

phi-2-gpo-test-longest-iter-v1-4

This model is a fine-tuned version of DUAL-GPO/phi-2-gpo-test-longest-iter-v1-3 on the HuggingFaceH4/ultrafeedback_binarized dataset. It achieves the following results on the evaluation set:

  • Loss: 0.0015
  • Rewards/chosen: 0.0002
  • Rewards/rejected: -0.0007
  • Rewards/accuracies: 0.5360
  • Rewards/margins: 0.0010
  • Logps/rejected: -278.6109
  • Logps/chosen: -306.2527
  • Logits/rejected: 0.0934
  • Logits/chosen: -0.0054

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 5e-06
  • train_batch_size: 4
  • eval_batch_size: 4
  • seed: 42
  • distributed_type: multi-GPU
  • gradient_accumulation_steps: 4
  • total_train_batch_size: 16
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: cosine
  • lr_scheduler_warmup_ratio: 0.1
  • num_epochs: 4

Training results

Training Loss Epoch Step Validation Loss Rewards/chosen Rewards/rejected Rewards/accuracies Rewards/margins Logps/rejected Logps/chosen Logits/rejected Logits/chosen
0.001 1.6 100 0.0015 0.0000 -0.0003 0.5040 0.0004 -278.5704 -306.2733 0.0926 -0.0051
0.001 3.2 200 0.0015 -0.0000 -0.0004 0.4885 0.0004 -278.5775 -306.2765 0.0977 -0.0020

Framework versions

  • PEFT 0.7.1
  • Transformers 4.36.2
  • Pytorch 2.2.1+cu121
  • Datasets 2.14.6
  • Tokenizers 0.15.2
Downloads last month
0
Inference API
Unable to determine this model’s pipeline type. Check the docs .

Model tree for DUAL-GPO/phi-2-gpo-test-longest-iter-v1-4

Base model

microsoft/phi-2
Adapter
(633)
this model

Dataset used to train DUAL-GPO/phi-2-gpo-test-longest-iter-v1-4