Edit model card

phi-2-gpo-test-longest-iter-2

This model is a fine-tuned version of DUAL-GPO/phi-2-gpo-test-longest-iter-1 on the HuggingFaceH4/ultrafeedback_binarized dataset. It achieves the following results on the evaluation set:

  • Loss: 0.0108
  • Rewards/chosen: -0.0005
  • Rewards/rejected: -0.0003
  • Rewards/accuracies: 0.4915
  • Rewards/margins: -0.0001
  • Logps/rejected: -278.6774
  • Logps/chosen: -306.4169
  • Logits/rejected: 0.0876
  • Logits/chosen: -0.0097

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 5e-06
  • train_batch_size: 4
  • eval_batch_size: 4
  • seed: 42
  • distributed_type: multi-GPU
  • gradient_accumulation_steps: 4
  • total_train_batch_size: 16
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: cosine
  • lr_scheduler_warmup_ratio: 0.1
  • num_epochs: 2

Training results

Training Loss Epoch Step Validation Loss Rewards/chosen Rewards/rejected Rewards/accuracies Rewards/margins Logps/rejected Logps/chosen Logits/rejected Logits/chosen
0.0103 1.6 100 0.0108 0.0006 0.0007 0.5005 -0.0000 -278.5776 -306.3062 0.0866 -0.0109

Framework versions

  • PEFT 0.7.1
  • Transformers 4.36.2
  • Pytorch 2.2.1+cu121
  • Datasets 2.14.6
  • Tokenizers 0.15.2
Downloads last month
3
Inference API
Unable to determine this model’s pipeline type. Check the docs .

Model tree for DUAL-GPO/phi-2-gpo-test-longest-iter-2

Base model

microsoft/phi-2
Adapter
(633)
this model

Dataset used to train DUAL-GPO/phi-2-gpo-test-longest-iter-2