BraylonDash's picture
End of training
01453ce verified
metadata
license: mit
library_name: peft
tags:
  - alignment-handbook
  - generated_from_trainer
  - trl
  - dpo
base_model: microsoft/phi-2
datasets:
  - HuggingFaceH4/ultrafeedback_binarized
model-index:
  - name: phi-2-gpo-renew2-b0.001-v4-i1
    results: []

phi-2-gpo-renew2-b0.001-v4-i1

This model is a fine-tuned version of DUAL-GPO/phi-2-gpo-renew2-b0.001-i0 on the HuggingFaceH4/ultrafeedback_binarized dataset. It achieves the following results on the evaluation set:

  • Loss: 0.0536
  • Rewards/chosen: -0.0036
  • Rewards/rejected: -0.0039
  • Rewards/accuracies: 0.4695
  • Rewards/margins: 0.0002
  • Logps/rejected: -371.0876
  • Logps/chosen: -399.9150
  • Logits/rejected: -0.7623
  • Logits/chosen: -0.8574

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 5e-06
  • train_batch_size: 4
  • eval_batch_size: 4
  • seed: 42
  • distributed_type: multi-GPU
  • gradient_accumulation_steps: 4
  • total_train_batch_size: 16
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: cosine
  • lr_scheduler_warmup_ratio: 0.1
  • num_epochs: 1

Training results

Training Loss Epoch Step Validation Loss Rewards/chosen Rewards/rejected Rewards/accuracies Rewards/margins Logps/rejected Logps/chosen Logits/rejected Logits/chosen
0.1203 0.32 100 0.0537 -0.0024 -0.0024 0.4555 0.0001 -369.6694 -398.6797 -0.7167 -0.8167
0.1671 0.64 200 0.0537 -0.0036 -0.0037 0.4670 0.0001 -370.9240 -399.8586 -0.7745 -0.8674
0.1393 0.96 300 0.0536 -0.0038 -0.0040 0.4625 0.0003 -371.2791 -400.0731 -0.7820 -0.8772

Framework versions

  • PEFT 0.7.1
  • Transformers 4.36.2
  • Pytorch 2.1.2
  • Datasets 2.14.6
  • Tokenizers 0.15.2