metadata
license: mit
library_name: peft
tags:
- alignment-handbook
- generated_from_trainer
- trl
- dpo
base_model: microsoft/phi-2
datasets:
- HuggingFaceH4/ultrafeedback_binarized
model-index:
- name: phi-2-gpo-renew2-b0.001-v4-i1
results: []
phi-2-gpo-renew2-b0.001-v4-i1
This model is a fine-tuned version of DUAL-GPO/phi-2-gpo-renew2-b0.001-i0 on the HuggingFaceH4/ultrafeedback_binarized dataset. It achieves the following results on the evaluation set:
- Loss: 0.0536
- Rewards/chosen: -0.0036
- Rewards/rejected: -0.0039
- Rewards/accuracies: 0.4695
- Rewards/margins: 0.0002
- Logps/rejected: -371.0876
- Logps/chosen: -399.9150
- Logits/rejected: -0.7623
- Logits/chosen: -0.8574
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 5e-06
- train_batch_size: 4
- eval_batch_size: 4
- seed: 42
- distributed_type: multi-GPU
- gradient_accumulation_steps: 4
- total_train_batch_size: 16
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: cosine
- lr_scheduler_warmup_ratio: 0.1
- num_epochs: 1
Training results
Training Loss | Epoch | Step | Validation Loss | Rewards/chosen | Rewards/rejected | Rewards/accuracies | Rewards/margins | Logps/rejected | Logps/chosen | Logits/rejected | Logits/chosen |
---|---|---|---|---|---|---|---|---|---|---|---|
0.1203 | 0.32 | 100 | 0.0537 | -0.0024 | -0.0024 | 0.4555 | 0.0001 | -369.6694 | -398.6797 | -0.7167 | -0.8167 |
0.1671 | 0.64 | 200 | 0.0537 | -0.0036 | -0.0037 | 0.4670 | 0.0001 | -370.9240 | -399.8586 | -0.7745 | -0.8674 |
0.1393 | 0.96 | 300 | 0.0536 | -0.0038 | -0.0040 | 0.4625 | 0.0003 | -371.2791 | -400.0731 | -0.7820 | -0.8772 |
Framework versions
- PEFT 0.7.1
- Transformers 4.36.2
- Pytorch 2.1.2
- Datasets 2.14.6
- Tokenizers 0.15.2