mt5-small-finetuned-cnn_dailymail

This model is a fine-tuned version of google/mt5-small on the None dataset. It achieves the following results on the evaluation set:

  • Loss: 1.5244
  • Rouge1: 23.8806
  • Rouge2: 11.7122
  • Rougel: 20.1043
  • Rougelsum: 22.5041
  • Bleu 1: 3.5889
  • Bleu 2: 2.411
  • Bleu 3: 1.7466
  • Meteor: 11.8919
  • Lungime rezumat: 11.496
  • Lungime original: 46.991

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 5.6e-05
  • train_batch_size: 16
  • eval_batch_size: 16
  • seed: 42
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • num_epochs: 4

Training results

Training Loss Epoch Step Validation Loss Rouge1 Rouge2 Rougel Rougelsum Bleu 1 Bleu 2 Bleu 3 Meteor Lungime rezumat Lungime original
2.9989 1.0 3583 1.6617 21.745 9.6834 17.6 20.1315 3.1902 2.0591 1.4759 10.57 11.408 46.991
1.8552 2.0 7166 1.5640 22.5336 10.3837 18.3609 20.9449 3.2826 2.1341 1.5187 11.0138 11.3677 46.991
1.7715 3.0 10749 1.5354 23.5705 11.4281 19.7129 22.1588 3.5276 2.3649 1.7132 11.7397 11.4513 46.991
1.7385 4.0 14332 1.5244 23.8806 11.7122 20.1043 22.5041 3.5889 2.411 1.7466 11.8919 11.496 46.991

Framework versions

  • Transformers 4.40.0
  • Pytorch 2.2.2+cu118
  • Datasets 2.19.0
  • Tokenizers 0.19.1
Downloads last month
9
Safetensors
Model size
300M params
Tensor type
F32
·
Inference Examples
This model does not have enough activity to be deployed to Inference API (serverless) yet. Increase its social visibility and check back later, or deploy to Inference Endpoints (dedicated) instead.

Model tree for CyrexPro/mt5-small-finetuned-cnn_dailymail

Base model

google/mt5-small
Finetuned
(384)
this model