CultriX's picture
Update README.md
fa0a05f verified
---
library_name: transformers
tags:
- mergekit
- merge
base_model:
- v000000/Qwen2.5-Lumen-14B
- arcee-ai/SuperNova-Medius
- Qwen/Qwen2.5-14B
- rombodawg/Rombos-LLM-V2.6-Qwen-14b
- Qwen/Qwen2.5-14B-Instruct
- EVA-UNIT-01/EVA-Qwen2.5-14B-v0.0
model-index:
- name: Qwen2.5-14B-Wernicke
results:
- task:
type: text-generation
name: Text Generation
dataset:
name: IFEval (0-Shot)
type: HuggingFaceH4/ifeval
args:
num_few_shot: 0
metrics:
- type: inst_level_strict_acc and prompt_level_strict_acc
value: 52.35
name: strict accuracy
source:
url: >-
https://huggingface.co/spaces/open-llm-leaderboard/open_llm_leaderboard?query=CultriX/Qwen2.5-14B-Wernicke
name: Open LLM Leaderboard
- task:
type: text-generation
name: Text Generation
dataset:
name: BBH (3-Shot)
type: BBH
args:
num_few_shot: 3
metrics:
- type: acc_norm
value: 50.64
name: normalized accuracy
source:
url: >-
https://huggingface.co/spaces/open-llm-leaderboard/open_llm_leaderboard?query=CultriX/Qwen2.5-14B-Wernicke
name: Open LLM Leaderboard
- task:
type: text-generation
name: Text Generation
dataset:
name: MATH Lvl 5 (4-Shot)
type: hendrycks/competition_math
args:
num_few_shot: 4
metrics:
- type: exact_match
value: 30.06
name: exact match
source:
url: >-
https://huggingface.co/spaces/open-llm-leaderboard/open_llm_leaderboard?query=CultriX/Qwen2.5-14B-Wernicke
name: Open LLM Leaderboard
- task:
type: text-generation
name: Text Generation
dataset:
name: GPQA (0-shot)
type: Idavidrein/gpqa
args:
num_few_shot: 0
metrics:
- type: acc_norm
value: 19.13
name: acc_norm
source:
url: >-
https://huggingface.co/spaces/open-llm-leaderboard/open_llm_leaderboard?query=CultriX/Qwen2.5-14B-Wernicke
name: Open LLM Leaderboard
- task:
type: text-generation
name: Text Generation
dataset:
name: MuSR (0-shot)
type: TAUR-Lab/MuSR
args:
num_few_shot: 0
metrics:
- type: acc_norm
value: 18.25
name: acc_norm
source:
url: >-
https://huggingface.co/spaces/open-llm-leaderboard/open_llm_leaderboard?query=CultriX/Qwen2.5-14B-Wernicke
name: Open LLM Leaderboard
- task:
type: text-generation
name: Text Generation
dataset:
name: MMLU-PRO (5-shot)
type: TIGER-Lab/MMLU-Pro
config: main
split: test
args:
num_few_shot: 5
metrics:
- type: acc
value: 49.15
name: accuracy
source:
url: >-
https://huggingface.co/spaces/open-llm-leaderboard/open_llm_leaderboard?query=CultriX/Qwen2.5-14B-Wernicke
name: Open LLM Leaderboard
license: apache-2.0
language:
- en
metrics:
- accuracy
pipeline_tag: text-generation
---
# merge
This is a merge of pre-trained language models created using [mergekit](https://github.com/cg123/mergekit).
## Merge Details
### Merge Method
This model was merged using the [Model Stock](https://arxiv.org/abs/2403.19522) merge method using [Qwen/Qwen2.5-14B](https://huggingface.co/Qwen/Qwen2.5-14B) as a base.
### Models Merged
The following models were included in the merge:
* [v000000/Qwen2.5-Lumen-14B](https://huggingface.co/v000000/Qwen2.5-Lumen-14B)
* [arcee-ai/SuperNova-Medius](https://huggingface.co/arcee-ai/SuperNova-Medius)
* [rombodawg/Rombos-LLM-V2.6-Qwen-14b](https://huggingface.co/rombodawg/Rombos-LLM-V2.6-Qwen-14b)
* [Qwen/Qwen2.5-14B-Instruct](https://huggingface.co/Qwen/Qwen2.5-14B-Instruct)
* [EVA-UNIT-01/EVA-Qwen2.5-14B-v0.0](https://huggingface.co/EVA-UNIT-01/EVA-Qwen2.5-14B-v0.0)
### Configuration
The following YAML configuration was used to produce this model:
```yaml
models:
- model: EVA-UNIT-01/EVA-Qwen2.5-14B-v0.0
- model: Qwen/Qwen2.5-14B-Instruct
- model: arcee-ai/SuperNova-Medius
- model: rombodawg/Rombos-LLM-V2.6-Qwen-14b
- model: v000000/Qwen2.5-Lumen-14B
base_model: Qwen/Qwen2.5-14B
merge_method: model_stock
dtype: bfloat16
```
# [Open LLM Leaderboard Evaluation Results](https://huggingface.co/spaces/open-llm-leaderboard/open_llm_leaderboard)
Detailed results can be found [here](https://huggingface.co/datasets/open-llm-leaderboard/details_CultriX__Qwen2.5-14B-Wernicke)
| Metric |Value|
|-------------------|----:|
|Avg. |36.60|
|IFEval (0-Shot) |52.35|
|BBH (3-Shot) |50.64|
|MATH Lvl 5 (4-Shot)|30.06|
|GPQA (0-shot) |19.13|
|MuSR (0-shot) |18.25|
|MMLU-PRO (5-shot) |49.15|