|
--- |
|
base_model: |
|
- sometimesanotion/Lamarck-14B-v0.7-rc4 |
|
- sthenno/tempesthenno-ppo-ckpt40 |
|
library_name: transformers |
|
tags: |
|
- mergekit |
|
- merge |
|
|
|
--- |
|
# merge |
|
|
|
This is a merge of pre-trained language models created using [mergekit](https://github.com/cg123/mergekit). |
|
|
|
## Merge Details |
|
### Merge Method |
|
|
|
This model was merged using the [SLERP](https://en.wikipedia.org/wiki/Slerp) merge method. |
|
|
|
### Models Merged |
|
|
|
The following models were included in the merge: |
|
* [sometimesanotion/Lamarck-14B-v0.7-rc4](https://huggingface.co/sometimesanotion/Lamarck-14B-v0.7-rc4) |
|
* [sthenno/tempesthenno-ppo-ckpt40](https://huggingface.co/sthenno/tempesthenno-ppo-ckpt40) |
|
|
|
### Configuration |
|
|
|
The following YAML configuration was used to produce this model: |
|
|
|
```yaml |
|
# ============================================================================= |
|
# SuperMerge-14B-Simple |
|
# |
|
# This configuration merges only two components: |
|
# - Base Model: Provides stable foundational features. |
|
# Model: sometimesanotion/Lamarck-14B-v0.7-rc4 |
|
# |
|
# - Reasoning Module: Drives enhanced mid-layer reasoning. |
|
# Model: sthenno/tempesthenno-ppo-ckpt40 |
|
# |
|
# The merge is performed using slerp with a V-shaped interpolation curve. |
|
# Weighting across each 8-layer slice is tuned to balance core feature |
|
# preservation with advanced reasoning. |
|
# ============================================================================= |
|
name: SuperMerge-14B-Simple |
|
merge_method: slerp |
|
base_model: sometimesanotion/Lamarck-14B-v0.7-rc4 |
|
tokenizer_source: base |
|
dtype: float32 |
|
out_dtype: bfloat16 |
|
parameters: |
|
int8_mask: true # Optimize memory usage. |
|
normalize: true # Ensure weights are on a comparable scale. |
|
rescale: false # No additional rescaling necessary. |
|
# Interpolation curve for 6 slices (48 layers total): |
|
# Maintains a V-shaped emphasis for mid-layer processing. |
|
t: [0.1, 0.35, 0.85, 0.85, 0.35, 0.1] |
|
slices: |
|
# --------------------------------------------------------------------------- |
|
# Slice 1 (Layers 0-8): |
|
# - Early layers: nearly pure base model with minimal PPO influence. |
|
# --------------------------------------------------------------------------- |
|
- sources: |
|
- model: sometimesanotion/Lamarck-14B-v0.7-rc4 |
|
layer_range: [0, 8] |
|
parameters: |
|
weight: 0.95 |
|
- model: sthenno/tempesthenno-ppo-ckpt40 |
|
layer_range: [0, 8] |
|
parameters: |
|
weight: 0.05 |
|
|
|
# --------------------------------------------------------------------------- |
|
# Slice 2 (Layers 8-16): |
|
# - Blend base with stronger PPO contributions to boost reasoning. |
|
# --------------------------------------------------------------------------- |
|
- sources: |
|
- model: sometimesanotion/Lamarck-14B-v0.7-rc4 |
|
layer_range: [8, 16] |
|
parameters: |
|
weight: 0.4 |
|
- model: sthenno/tempesthenno-ppo-ckpt40 |
|
layer_range: [8, 16] |
|
parameters: |
|
weight: 0.6 |
|
|
|
# --------------------------------------------------------------------------- |
|
# Slice 3 (Layers 16-24): |
|
# - Mid-layer: Prioritize advanced reasoning by increasing the PPO share. |
|
# --------------------------------------------------------------------------- |
|
- sources: |
|
- model: sometimesanotion/Lamarck-14B-v0.7-rc4 |
|
layer_range: [16, 24] |
|
parameters: |
|
weight: 0.3 |
|
- model: sthenno/tempesthenno-ppo-ckpt40 |
|
layer_range: [16, 24] |
|
parameters: |
|
weight: 0.7 |
|
|
|
# --------------------------------------------------------------------------- |
|
# Slice 4 (Layers 24-32): |
|
# - Continue the focus on reasoning with PPO while still retaining base traits. |
|
# --------------------------------------------------------------------------- |
|
- sources: |
|
- model: sometimesanotion/Lamarck-14B-v0.7-rc4 |
|
layer_range: [24, 32] |
|
parameters: |
|
weight: 0.35 |
|
- model: sthenno/tempesthenno-ppo-ckpt40 |
|
layer_range: [24, 32] |
|
parameters: |
|
weight: 0.65 |
|
|
|
# --------------------------------------------------------------------------- |
|
# Slice 5 (Layers 32-40): |
|
# - Re-stabilize the network with a stronger base model contribution. |
|
# --------------------------------------------------------------------------- |
|
- sources: |
|
- model: sometimesanotion/Lamarck-14B-v0.7-rc4 |
|
layer_range: [32, 40] |
|
parameters: |
|
weight: 0.6 |
|
- model: sthenno/tempesthenno-ppo-ckpt40 |
|
layer_range: [32, 40] |
|
parameters: |
|
weight: 0.4 |
|
|
|
# --------------------------------------------------------------------------- |
|
# Slice 6 (Layers 40-48): |
|
# - Final output layers: Maintain fluency with the base model augmented by PPO. |
|
# --------------------------------------------------------------------------- |
|
- sources: |
|
- model: sometimesanotion/Lamarck-14B-v0.7-rc4 |
|
layer_range: [40, 48] |
|
parameters: |
|
weight: 0.6 |
|
- model: sthenno/tempesthenno-ppo-ckpt40 |
|
layer_range: [40, 48] |
|
parameters: |
|
weight: 0.4 |
|
|
|
``` |
|
|