metadata
tags:
- merge
- mergekit
- lazymergekit
- mlabonne/NeuralBeagle14-7B
- FelixChao/WestSeverus-7B-DPO-v2
- CultriX/MergeTrix-7B-v2
base_model:
- mlabonne/NeuralBeagle14-7B
- FelixChao/WestSeverus-7B-DPO-v2
- CultriX/MergeTrix-7B-v2
license: apache-2.0
EDIT:
Always check my space for the latest benchmark results for my models!
OmniTrixAI
OmniTrixAI is a merge of the following models using LazyMergekit:
🧩 Configuration
models:
- model: senseable/WestLake-7B-v2
# No parameters necessary for base model
- model: mlabonne/NeuralBeagle14-7B
parameters:
density: 0.65
weight: 0.40
- model: FelixChao/WestSeverus-7B-DPO-v2
parameters:
density: 0.45
weight: 0.26
- model: CultriX/MergeTrix-7B-v2
parameters:
density: 0.55
weight: 0.34
merge_method: dare_ties
base_model: senseable/WestLake-7B-v2
parameters:
int8_mask: true
dtype: float16
💻 Usage
!pip install -qU transformers accelerate
from transformers import AutoTokenizer
import transformers
import torch
model = "CultriX/OmniTrixAI"
messages = [{"role": "user", "content": "What is a large language model?"}]
tokenizer = AutoTokenizer.from_pretrained(model)
prompt = tokenizer.apply_chat_template(messages, tokenize=False, add_generation_prompt=True)
pipeline = transformers.pipeline(
"text-generation",
model=model,
torch_dtype=torch.float16,
device_map="auto",
)
outputs = pipeline(prompt, max_new_tokens=256, do_sample=True, temperature=0.7, top_k=50, top_p=0.95)
print(outputs[0]["generated_text"])