OmniTrixAI / README.md
CultriX's picture
Update README.md
f6ed4be verified
metadata
tags:
  - merge
  - mergekit
  - lazymergekit
  - mlabonne/NeuralBeagle14-7B
  - FelixChao/WestSeverus-7B-DPO-v2
  - CultriX/MergeTrix-7B-v2
base_model:
  - mlabonne/NeuralBeagle14-7B
  - FelixChao/WestSeverus-7B-DPO-v2
  - CultriX/MergeTrix-7B-v2
license: apache-2.0

EDIT:

Always check my space for the latest benchmark results for my models!

OmniTrixAI

OmniTrixAI is a merge of the following models using LazyMergekit:

🧩 Configuration

models:
  - model: senseable/WestLake-7B-v2
    # No parameters necessary for base model
  - model: mlabonne/NeuralBeagle14-7B
    parameters:
      density: 0.65
      weight: 0.40
  - model: FelixChao/WestSeverus-7B-DPO-v2
    parameters:
      density: 0.45
      weight: 0.26
  - model: CultriX/MergeTrix-7B-v2
    parameters:
      density: 0.55
      weight: 0.34
merge_method: dare_ties
base_model: senseable/WestLake-7B-v2
parameters:
  int8_mask: true
dtype: float16

💻 Usage

!pip install -qU transformers accelerate

from transformers import AutoTokenizer
import transformers
import torch

model = "CultriX/OmniTrixAI"
messages = [{"role": "user", "content": "What is a large language model?"}]

tokenizer = AutoTokenizer.from_pretrained(model)
prompt = tokenizer.apply_chat_template(messages, tokenize=False, add_generation_prompt=True)
pipeline = transformers.pipeline(
    "text-generation",
    model=model,
    torch_dtype=torch.float16,
    device_map="auto",
)

outputs = pipeline(prompt, max_new_tokens=256, do_sample=True, temperature=0.7, top_k=50, top_p=0.95)
print(outputs[0]["generated_text"])