Faeze's picture
Add SetFit model
fc5981a
|
raw
history blame
13.7 kB
metadata
library_name: setfit
tags:
  - setfit
  - sentence-transformers
  - text-classification
  - generated_from_setfit_trainer
metrics:
  - metric
widget:
  - text: Damn, my condolences to you bro
  - text: No Friday Im booked all day
  - text: Im sorry.
  - text: Hiding in the bush
  - text: >-
      *"The conservative party is a cult." Says the group that bans words and
      follows socialism.??*
pipeline_tag: text-classification
inference: false
base_model: sentence-transformers/paraphrase-mpnet-base-v2
model-index:
  - name: SetFit with sentence-transformers/paraphrase-mpnet-base-v2
    results:
      - task:
          type: text-classification
          name: Text Classification
        dataset:
          name: Unknown
          type: unknown
          split: test
        metrics:
          - type: metric
            value: 0.7340375623557441
            name: Metric

SetFit with sentence-transformers/paraphrase-mpnet-base-v2

This is a SetFit model that can be used for Text Classification. This SetFit model uses sentence-transformers/paraphrase-mpnet-base-v2 as the Sentence Transformer embedding model. A ClassifierChain instance is used for classification.

The model has been trained using an efficient few-shot learning technique that involves:

  1. Fine-tuning a Sentence Transformer with contrastive learning.
  2. Training a classification head with features from the fine-tuned Sentence Transformer.

Model Details

Model Description

Model Sources

Evaluation

Metrics

Label Metric
all 0.7340

Uses

Direct Use for Inference

First install the SetFit library:

pip install setfit

Then you can load this model and run inference.

from setfit import SetFitModel

# Download from the 🤗 Hub
model = SetFitModel.from_pretrained("CrisisNarratives/setfit-8classes-multi_label")
# Run inference
preds = model("Im sorry.")

Training Details

Training Set Metrics

Training set Min Median Max
Word count 1 25.3789 1681

Training Hyperparameters

  • batch_size: (16, 16)
  • num_epochs: (3, 3)
  • max_steps: -1
  • sampling_strategy: oversampling
  • num_iterations: 40
  • body_learning_rate: (1.752e-05, 1.752e-05)
  • head_learning_rate: 1.752e-05
  • loss: CosineSimilarityLoss
  • distance_metric: cosine_distance
  • margin: 0.25
  • end_to_end: False
  • use_amp: False
  • warmup_proportion: 0.1
  • seed: 30
  • eval_max_steps: -1
  • load_best_model_at_end: False

Training Results

Epoch Step Training Loss Validation Loss
0.0004 1 0.4024 -
0.0185 50 0.2502 -
0.0370 100 0.2222 -
0.0555 150 0.2279 -
0.0739 200 0.2556 -
0.0924 250 0.2444 -
0.1109 300 0.2441 -
0.1294 350 0.2538 -
0.1479 400 0.2245 -
0.1664 450 0.2111 -
0.1848 500 0.1554 -
0.2033 550 0.1361 -
0.2218 600 0.1712 -
0.2403 650 0.1506 -
0.2588 700 0.1175 -
0.2773 750 0.0695 -
0.2957 800 0.0916 -
0.3142 850 0.0884 -
0.3327 900 0.0412 -
0.3512 950 0.1189 -
0.3697 1000 0.0485 -
0.3882 1050 0.1098 -
0.4067 1100 0.0303 -
0.4251 1150 0.0244 -
0.4436 1200 0.0429 -
0.4621 1250 0.034 -
0.4806 1300 0.0725 -
0.4991 1350 0.0438 -
0.5176 1400 0.0124 -
0.5360 1450 0.1603 -
0.5545 1500 0.1134 -
0.5730 1550 0.098 -
0.5915 1600 0.0343 -
0.6100 1650 0.0354 -
0.6285 1700 0.0892 -
0.6470 1750 0.0137 -
0.6654 1800 0.071 -
0.6839 1850 0.0317 -
0.7024 1900 0.0285 -
0.7209 1950 0.0311 -
0.7394 2000 0.0755 -
0.7579 2050 0.09 -
0.7763 2100 0.0565 -
0.7948 2150 0.0099 -
0.8133 2200 0.0236 -
0.8318 2250 0.0663 -
0.8503 2300 0.1391 -
0.8688 2350 0.0176 -
0.8872 2400 0.0645 -
0.9057 2450 0.0318 -
0.9242 2500 0.0186 -
0.9427 2550 0.0514 -
0.9612 2600 0.0261 -
0.9797 2650 0.0535 -
0.9982 2700 0.018 -
1.0166 2750 0.0218 -
1.0351 2800 0.0351 -
1.0536 2850 0.0704 -
1.0721 2900 0.0251 -
1.0906 2950 0.0156 -
1.1091 3000 0.0821 -
1.1275 3050 0.0273 -
1.1460 3100 0.0719 -
1.1645 3150 0.0496 -
1.1830 3200 0.0124 -
1.2015 3250 0.0576 -
1.2200 3300 0.0453 -
1.2384 3350 0.0236 -
1.2569 3400 0.013 -
1.2754 3450 0.0909 -
1.2939 3500 0.024 -
1.3124 3550 0.0264 -
1.3309 3600 0.0397 -
1.3494 3650 0.0484 -
1.3678 3700 0.0301 -
1.3863 3750 0.0512 -
1.4048 3800 0.0625 -
1.4233 3850 0.0583 -
1.4418 3900 0.0506 -
1.4603 3950 0.0561 -
1.4787 4000 0.0295 -
1.4972 4050 0.1352 -
1.5157 4100 0.0101 -
1.5342 4150 0.0221 -
1.5527 4200 0.057 -
1.5712 4250 0.0389 -
1.5896 4300 0.0173 -
1.6081 4350 0.0605 -
1.6266 4400 0.0187 -
1.6451 4450 0.0401 -
1.6636 4500 0.0571 -
1.6821 4550 0.0612 -
1.7006 4600 0.03 -
1.7190 4650 0.0299 -
1.7375 4700 0.0583 -
1.7560 4750 0.0279 -
1.7745 4800 0.027 -
1.7930 4850 0.0343 -
1.8115 4900 0.0634 -
1.8299 4950 0.0748 -
1.8484 5000 0.0699 -
1.8669 5050 0.0678 -
1.8854 5100 0.0724 -
1.9039 5150 0.0211 -
1.9224 5200 0.037 -
1.9409 5250 0.0891 -
1.9593 5300 0.0235 -
1.9778 5350 0.0339 -
1.9963 5400 0.029 -
2.0148 5450 0.1292 -
2.0333 5500 0.0457 -
2.0518 5550 0.0577 -
2.0702 5600 0.063 -
2.0887 5650 0.0198 -
2.1072 5700 0.0367 -
2.1257 5750 0.0475 -
2.1442 5800 0.0368 -
2.1627 5850 0.0401 -
2.1811 5900 0.0353 -
2.1996 5950 0.0387 -
2.2181 6000 0.0325 -
2.2366 6050 0.046 -
2.2551 6100 0.03 -
2.2736 6150 0.0338 -
2.2921 6200 0.0374 -
2.3105 6250 0.0206 -
2.3290 6300 0.031 -
2.3475 6350 0.0493 -
2.3660 6400 0.0182 -
2.3845 6450 0.0352 -
2.4030 6500 0.0622 -
2.4214 6550 0.0682 -
2.4399 6600 0.0227 -
2.4584 6650 0.0401 -
2.4769 6700 0.0348 -
2.4954 6750 0.0417 -
2.5139 6800 0.0232 -
2.5323 6850 0.0603 -
2.5508 6900 0.0981 -
2.5693 6950 0.0433 -
2.5878 7000 0.0187 -
2.6063 7050 0.0099 -
2.6248 7100 0.0276 -
2.6433 7150 0.0516 -
2.6617 7200 0.0211 -
2.6802 7250 0.0191 -
2.6987 7300 0.1152 -
2.7172 7350 0.0442 -
2.7357 7400 0.0226 -
2.7542 7450 0.0429 -
2.7726 7500 0.0313 -
2.7911 7550 0.0601 -
2.8096 7600 0.0156 -
2.8281 7650 0.039 -
2.8466 7700 0.0239 -
2.8651 7750 0.1159 -
2.8835 7800 0.0223 -
2.9020 7850 0.0442 -
2.9205 7900 0.0254 -
2.9390 7950 0.0268 -
2.9575 8000 0.0415 -
2.9760 8050 0.0235 -
2.9945 8100 0.0177 -

Framework Versions

  • Python: 3.9.16
  • SetFit: 1.0.1
  • Sentence Transformers: 2.2.2
  • Transformers: 4.35.0
  • PyTorch: 2.1.0+cu121
  • Datasets: 2.14.6
  • Tokenizers: 0.14.1

Citation

BibTeX

@article{https://doi.org/10.48550/arxiv.2209.11055,
    doi = {10.48550/ARXIV.2209.11055},
    url = {https://arxiv.org/abs/2209.11055},
    author = {Tunstall, Lewis and Reimers, Nils and Jo, Unso Eun Seo and Bates, Luke and Korat, Daniel and Wasserblat, Moshe and Pereg, Oren},
    keywords = {Computation and Language (cs.CL), FOS: Computer and information sciences, FOS: Computer and information sciences},
    title = {Efficient Few-Shot Learning Without Prompts},
    publisher = {arXiv},
    year = {2022},
    copyright = {Creative Commons Attribution 4.0 International}
}