metadata
library_name: setfit
tags:
- setfit
- sentence-transformers
- text-classification
- generated_from_setfit_trainer
metrics:
- metric
widget:
- text: Damn, my condolences to you bro
- text: No Friday Im booked all day
- text: Im sorry.
- text: Hiding in the bush
- text: >-
*"The conservative party is a cult." Says the group that bans words and
follows socialism.??*
pipeline_tag: text-classification
inference: false
base_model: sentence-transformers/paraphrase-mpnet-base-v2
model-index:
- name: SetFit with sentence-transformers/paraphrase-mpnet-base-v2
results:
- task:
type: text-classification
name: Text Classification
dataset:
name: Unknown
type: unknown
split: test
metrics:
- type: metric
value: 0.7340375623557441
name: Metric
SetFit with sentence-transformers/paraphrase-mpnet-base-v2
This is a SetFit model that can be used for Text Classification. This SetFit model uses sentence-transformers/paraphrase-mpnet-base-v2 as the Sentence Transformer embedding model. A ClassifierChain instance is used for classification.
The model has been trained using an efficient few-shot learning technique that involves:
- Fine-tuning a Sentence Transformer with contrastive learning.
- Training a classification head with features from the fine-tuned Sentence Transformer.
Model Details
Model Description
- Model Type: SetFit
- Sentence Transformer body: sentence-transformers/paraphrase-mpnet-base-v2
- Classification head: a ClassifierChain instance
- Maximum Sequence Length: 512 tokens
Model Sources
- Repository: SetFit on GitHub
- Paper: Efficient Few-Shot Learning Without Prompts
- Blogpost: SetFit: Efficient Few-Shot Learning Without Prompts
Evaluation
Metrics
Label | Metric |
---|---|
all | 0.7340 |
Uses
Direct Use for Inference
First install the SetFit library:
pip install setfit
Then you can load this model and run inference.
from setfit import SetFitModel
# Download from the 🤗 Hub
model = SetFitModel.from_pretrained("CrisisNarratives/setfit-8classes-multi_label")
# Run inference
preds = model("Im sorry.")
Training Details
Training Set Metrics
Training set | Min | Median | Max |
---|---|---|---|
Word count | 1 | 25.3789 | 1681 |
Training Hyperparameters
- batch_size: (16, 16)
- num_epochs: (3, 3)
- max_steps: -1
- sampling_strategy: oversampling
- num_iterations: 40
- body_learning_rate: (1.752e-05, 1.752e-05)
- head_learning_rate: 1.752e-05
- loss: CosineSimilarityLoss
- distance_metric: cosine_distance
- margin: 0.25
- end_to_end: False
- use_amp: False
- warmup_proportion: 0.1
- seed: 30
- eval_max_steps: -1
- load_best_model_at_end: False
Training Results
Epoch | Step | Training Loss | Validation Loss |
---|---|---|---|
0.0004 | 1 | 0.4024 | - |
0.0185 | 50 | 0.2502 | - |
0.0370 | 100 | 0.2222 | - |
0.0555 | 150 | 0.2279 | - |
0.0739 | 200 | 0.2556 | - |
0.0924 | 250 | 0.2444 | - |
0.1109 | 300 | 0.2441 | - |
0.1294 | 350 | 0.2538 | - |
0.1479 | 400 | 0.2245 | - |
0.1664 | 450 | 0.2111 | - |
0.1848 | 500 | 0.1554 | - |
0.2033 | 550 | 0.1361 | - |
0.2218 | 600 | 0.1712 | - |
0.2403 | 650 | 0.1506 | - |
0.2588 | 700 | 0.1175 | - |
0.2773 | 750 | 0.0695 | - |
0.2957 | 800 | 0.0916 | - |
0.3142 | 850 | 0.0884 | - |
0.3327 | 900 | 0.0412 | - |
0.3512 | 950 | 0.1189 | - |
0.3697 | 1000 | 0.0485 | - |
0.3882 | 1050 | 0.1098 | - |
0.4067 | 1100 | 0.0303 | - |
0.4251 | 1150 | 0.0244 | - |
0.4436 | 1200 | 0.0429 | - |
0.4621 | 1250 | 0.034 | - |
0.4806 | 1300 | 0.0725 | - |
0.4991 | 1350 | 0.0438 | - |
0.5176 | 1400 | 0.0124 | - |
0.5360 | 1450 | 0.1603 | - |
0.5545 | 1500 | 0.1134 | - |
0.5730 | 1550 | 0.098 | - |
0.5915 | 1600 | 0.0343 | - |
0.6100 | 1650 | 0.0354 | - |
0.6285 | 1700 | 0.0892 | - |
0.6470 | 1750 | 0.0137 | - |
0.6654 | 1800 | 0.071 | - |
0.6839 | 1850 | 0.0317 | - |
0.7024 | 1900 | 0.0285 | - |
0.7209 | 1950 | 0.0311 | - |
0.7394 | 2000 | 0.0755 | - |
0.7579 | 2050 | 0.09 | - |
0.7763 | 2100 | 0.0565 | - |
0.7948 | 2150 | 0.0099 | - |
0.8133 | 2200 | 0.0236 | - |
0.8318 | 2250 | 0.0663 | - |
0.8503 | 2300 | 0.1391 | - |
0.8688 | 2350 | 0.0176 | - |
0.8872 | 2400 | 0.0645 | - |
0.9057 | 2450 | 0.0318 | - |
0.9242 | 2500 | 0.0186 | - |
0.9427 | 2550 | 0.0514 | - |
0.9612 | 2600 | 0.0261 | - |
0.9797 | 2650 | 0.0535 | - |
0.9982 | 2700 | 0.018 | - |
1.0166 | 2750 | 0.0218 | - |
1.0351 | 2800 | 0.0351 | - |
1.0536 | 2850 | 0.0704 | - |
1.0721 | 2900 | 0.0251 | - |
1.0906 | 2950 | 0.0156 | - |
1.1091 | 3000 | 0.0821 | - |
1.1275 | 3050 | 0.0273 | - |
1.1460 | 3100 | 0.0719 | - |
1.1645 | 3150 | 0.0496 | - |
1.1830 | 3200 | 0.0124 | - |
1.2015 | 3250 | 0.0576 | - |
1.2200 | 3300 | 0.0453 | - |
1.2384 | 3350 | 0.0236 | - |
1.2569 | 3400 | 0.013 | - |
1.2754 | 3450 | 0.0909 | - |
1.2939 | 3500 | 0.024 | - |
1.3124 | 3550 | 0.0264 | - |
1.3309 | 3600 | 0.0397 | - |
1.3494 | 3650 | 0.0484 | - |
1.3678 | 3700 | 0.0301 | - |
1.3863 | 3750 | 0.0512 | - |
1.4048 | 3800 | 0.0625 | - |
1.4233 | 3850 | 0.0583 | - |
1.4418 | 3900 | 0.0506 | - |
1.4603 | 3950 | 0.0561 | - |
1.4787 | 4000 | 0.0295 | - |
1.4972 | 4050 | 0.1352 | - |
1.5157 | 4100 | 0.0101 | - |
1.5342 | 4150 | 0.0221 | - |
1.5527 | 4200 | 0.057 | - |
1.5712 | 4250 | 0.0389 | - |
1.5896 | 4300 | 0.0173 | - |
1.6081 | 4350 | 0.0605 | - |
1.6266 | 4400 | 0.0187 | - |
1.6451 | 4450 | 0.0401 | - |
1.6636 | 4500 | 0.0571 | - |
1.6821 | 4550 | 0.0612 | - |
1.7006 | 4600 | 0.03 | - |
1.7190 | 4650 | 0.0299 | - |
1.7375 | 4700 | 0.0583 | - |
1.7560 | 4750 | 0.0279 | - |
1.7745 | 4800 | 0.027 | - |
1.7930 | 4850 | 0.0343 | - |
1.8115 | 4900 | 0.0634 | - |
1.8299 | 4950 | 0.0748 | - |
1.8484 | 5000 | 0.0699 | - |
1.8669 | 5050 | 0.0678 | - |
1.8854 | 5100 | 0.0724 | - |
1.9039 | 5150 | 0.0211 | - |
1.9224 | 5200 | 0.037 | - |
1.9409 | 5250 | 0.0891 | - |
1.9593 | 5300 | 0.0235 | - |
1.9778 | 5350 | 0.0339 | - |
1.9963 | 5400 | 0.029 | - |
2.0148 | 5450 | 0.1292 | - |
2.0333 | 5500 | 0.0457 | - |
2.0518 | 5550 | 0.0577 | - |
2.0702 | 5600 | 0.063 | - |
2.0887 | 5650 | 0.0198 | - |
2.1072 | 5700 | 0.0367 | - |
2.1257 | 5750 | 0.0475 | - |
2.1442 | 5800 | 0.0368 | - |
2.1627 | 5850 | 0.0401 | - |
2.1811 | 5900 | 0.0353 | - |
2.1996 | 5950 | 0.0387 | - |
2.2181 | 6000 | 0.0325 | - |
2.2366 | 6050 | 0.046 | - |
2.2551 | 6100 | 0.03 | - |
2.2736 | 6150 | 0.0338 | - |
2.2921 | 6200 | 0.0374 | - |
2.3105 | 6250 | 0.0206 | - |
2.3290 | 6300 | 0.031 | - |
2.3475 | 6350 | 0.0493 | - |
2.3660 | 6400 | 0.0182 | - |
2.3845 | 6450 | 0.0352 | - |
2.4030 | 6500 | 0.0622 | - |
2.4214 | 6550 | 0.0682 | - |
2.4399 | 6600 | 0.0227 | - |
2.4584 | 6650 | 0.0401 | - |
2.4769 | 6700 | 0.0348 | - |
2.4954 | 6750 | 0.0417 | - |
2.5139 | 6800 | 0.0232 | - |
2.5323 | 6850 | 0.0603 | - |
2.5508 | 6900 | 0.0981 | - |
2.5693 | 6950 | 0.0433 | - |
2.5878 | 7000 | 0.0187 | - |
2.6063 | 7050 | 0.0099 | - |
2.6248 | 7100 | 0.0276 | - |
2.6433 | 7150 | 0.0516 | - |
2.6617 | 7200 | 0.0211 | - |
2.6802 | 7250 | 0.0191 | - |
2.6987 | 7300 | 0.1152 | - |
2.7172 | 7350 | 0.0442 | - |
2.7357 | 7400 | 0.0226 | - |
2.7542 | 7450 | 0.0429 | - |
2.7726 | 7500 | 0.0313 | - |
2.7911 | 7550 | 0.0601 | - |
2.8096 | 7600 | 0.0156 | - |
2.8281 | 7650 | 0.039 | - |
2.8466 | 7700 | 0.0239 | - |
2.8651 | 7750 | 0.1159 | - |
2.8835 | 7800 | 0.0223 | - |
2.9020 | 7850 | 0.0442 | - |
2.9205 | 7900 | 0.0254 | - |
2.9390 | 7950 | 0.0268 | - |
2.9575 | 8000 | 0.0415 | - |
2.9760 | 8050 | 0.0235 | - |
2.9945 | 8100 | 0.0177 | - |
Framework Versions
- Python: 3.9.16
- SetFit: 1.0.1
- Sentence Transformers: 2.2.2
- Transformers: 4.35.0
- PyTorch: 2.1.0+cu121
- Datasets: 2.14.6
- Tokenizers: 0.14.1
Citation
BibTeX
@article{https://doi.org/10.48550/arxiv.2209.11055,
doi = {10.48550/ARXIV.2209.11055},
url = {https://arxiv.org/abs/2209.11055},
author = {Tunstall, Lewis and Reimers, Nils and Jo, Unso Eun Seo and Bates, Luke and Korat, Daniel and Wasserblat, Moshe and Pereg, Oren},
keywords = {Computation and Language (cs.CL), FOS: Computer and information sciences, FOS: Computer and information sciences},
title = {Efficient Few-Shot Learning Without Prompts},
publisher = {arXiv},
year = {2022},
copyright = {Creative Commons Attribution 4.0 International}
}