SetSUMBT-dst-nlu-multiwoz21

This model is a fine-tuned version SetSUMBT of roberta-base on MultiWOZ2.1. This model is a combined DST and NLU model and is a distribution distilled version of a ensemble of 5 models. This model should be used to produce uncertainty estimates for the dialogue belief state.

Refer to ConvLab-3 for model description and usage.

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 0.00001
  • train_batch_size: 3
  • eval_batch_size: 16
  • seed: 0
  • gradient_accumulation_steps: 1
  • optimizer: AdamW
  • loss: Ensemble Distribution Distillation Loss
  • lr_scheduler_type: linear
  • num_epochs: 50.0

Framework versions

  • Transformers 4.17.0
  • Pytorch 1.8.0+cu110
  • Datasets 2.3.2
  • Tokenizers 0.12.1
Downloads last month
62
Inference Providers NEW
This model is not currently available via any of the supported Inference Providers.
The model cannot be deployed to the HF Inference API: The model has no pipeline_tag.

Dataset used to train ConvLab/setsumbt-dst_nlu-multiwoz21-EnD2

Evaluation results