NER_Pittsburgh_TAA
This model is a fine-tuned version of bert-base-uncased on the conll2003 dataset. It achieves the following results on the evaluation set:
- Loss: 0.0860
- Precision: 0.9429
- Recall: 0.9518
- F1: 0.9473
- Accuracy: 0.9867
Model description
Ukr
Модель була створена як практичне завдання з машиного навчання, це за fine-tuning BERT модель для задачі Named Entity Recognition. Датасет який був використан це conll2003, стандат для навчання моделей під задачу Named Entity Recognition, або ще визначення складових мови в реченні. Дізнатися як працює модель маєте змогу або через інтерфейс, який надає huggingface, або ж через код
from transformers import AutoTokenizer, AutoModelForTokenClassification
tokenizer = AutoTokenizer.from_pretrained("CineAI/NER_Pittsburgh_TAA")
model = AutoModelForTokenClassification.from_pretrained("CineAI/NER_Pittsburgh_TAA")
Якщо цікавить чому модель має таку назву, перше це для чого вона для NER, друга складова це назва крутої пісні Pittsburgh третя і остання складова це гурт який пісню створив це The Amity Affliction
En
The model was created as a practical machine learning task, it is a fine-tuning BERT model for the Named Entity Recognition task. The dataset used is conll2003, a standard for training models for the Named Entity Recognition task, or for identifying the components of speech in a sentence. You can find out how the model works either through the interface provided by huggingface or through the code
from transformers import AutoTokenizer, AutoModelForTokenClassification
tokenizer = AutoTokenizer.from_pretrained("CineAI/NER_Pittsburgh_TAA")
model = AutoModelForTokenClassification.from_pretrained("CineAI/NER_Pittsburgh_TAA")
If you are wondering why the model has such a name, the first is why it is for NER, the second component is the name of a cool song Pittsburgh, the third and last component is the band that created the song - The Amity Affliction
Intended uses & limitations
Everyone can use this model, it is completely free and distributed under the Apache 2.0 licence.
Training and evaluation data
Training and assessment data are the same - conll2003
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 2e-05
- train_batch_size: 32
- eval_batch_size: 32
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 5
Training results
Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1 | Accuracy |
---|---|---|---|---|---|---|---|
No log | 1.0 | 439 | 0.0863 | 0.9437 | 0.9444 | 0.9440 | 0.9861 |
0.0024 | 2.0 | 878 | 0.0995 | 0.9394 | 0.9442 | 0.9418 | 0.9852 |
0.0021 | 3.0 | 1317 | 0.0904 | 0.9355 | 0.9463 | 0.9409 | 0.9856 |
0.0012 | 4.0 | 1756 | 0.0835 | 0.9427 | 0.9514 | 0.9471 | 0.9867 |
0.0009 | 5.0 | 2195 | 0.0860 | 0.9429 | 0.9518 | 0.9473 | 0.9867 |
Framework versions
- Transformers 4.41.2
- Pytorch 2.3.0+cu121
- Datasets 2.19.2
- Tokenizers 0.19.1
- Downloads last month
- 26
Model tree for CineAI/NER_Pittsburgh_TAA
Base model
google-bert/bert-base-uncasedDataset used to train CineAI/NER_Pittsburgh_TAA
Evaluation results
- Precision on conll2003validation set self-reported0.943
- Recall on conll2003validation set self-reported0.952
- F1 on conll2003validation set self-reported0.947
- Accuracy on conll2003validation set self-reported0.987