license: other
license_name: databricks-open-model-license
license_link: https://www.databricks.com/legal/open-model-license
base_model: databricks/dbrx-base
tags:
- generated_from_trainer
- axolotl
datasets:
- cognitivecomputations/Dolphin-2.9
- teknium/OpenHermes-2.5
- m-a-p/CodeFeedback-Filtered-Instruction
- cognitivecomputations/dolphin-coder
- cognitivecomputations/samantha-data
- microsoft/orca-math-word-problems-200k
- Locutusque/function-calling-chatml
- internlm/Agent-FLAN
GGUF fix
This is the same model as cognitivecomputations/dolphin-2.9.1-dbrx, but with gguf fixes made by Kenjoyer applied(thanks a lot!). This model can be converted into gguf using llama.cpp.
Benchmarks and personal opinion
NeoEvalPlusN_benchmark
Name | Quant | Size | B | C | D | S | P | total | BCD | SP |
---|---|---|---|---|---|---|---|---|---|---|
cognitivecomputations/dolphin-2.9.1-dbrx | Q6_K | 16x12B | 3 | 1 | 3 | 4 | 6 | 17 | 7 | 10 |
cognitivecomputations/dolphin-2.9.1-qwen-110b | Q6_K | 110B | 0 | 1 | 3 | 3.75 | 4.25 | 12 | 4 | 8 |
databricks/dbrx-instruct | Q6_K | 16x12B | 0 | 0 | 0 | 6.5 | 4.5 | 11 | 0 | 11 |
cognitivecomputations/dolphin-2.2-70b | Q6_K | 70B | 0 | 1 | 1 | 4.5 | 4.5 | 11 | 2 | 9 |
Maximum | n/a | n/a | 3 | 2 | 3 | 8 | 6 | 22 | 8 | 14 |
More compliant than the official instruct tune(BCD). To my surprise, performed much better overall than qwen-110b tuned on the same dataset. Wrote 6 perfect poems(P column), which is very unusual. Only models from goliath family and more recent llama-3-70b-instruct could do that. Stylized writing tests(S column) were a bit disappointing, Dolphin is not famous for that. In practical use, did perform better than the official tune. Still knows a lot, just like the official tune. Writing is not great, wouldn't use it over Command-r+, unless I need to know some obscure facts. Feels like quantization hurts it a lot more than dense models.
Verdict: Meh, just like the other dolphins. Eric, no disrespect, but you need to get better datasets. GPTslop really hurts practical performance.
Original model card below
Dolphin 2.9.1 DBRX 🐬
Curated and trained by Eric Hartford, Lucas Atkins, and Fernando Fernandes, and Cognitive Computations
Discord: https://discord.gg/cognitivecomputations
Our appreciation for the sponsors of Dolphin 2.9.1:
- Crusoe Cloud - provided excellent on-demand 8xH100 node
This model is based on databricks/dbrx-base, and is governed by databricks-open-model-license
The base model has 32k context, and the full-weight fine-tuning was with 4k sequence length.
This model was trained FFT on parameters selected by Laser Scanner, using ChatML prompt template format.
example:
<|im_start|>system
You are Dolphin, a helpful AI assistant.<|im_end|>
<|im_start|>user
{prompt}<|im_end|>
<|im_start|>assistant
Dolphin-2.9.1 has a variety of instruction, conversational, and coding skills. It also has initial agentic abilities and supports function calling.
Dolphin is uncensored. We have filtered the dataset to remove alignment and bias. This makes the model more compliant. You are advised to implement your own alignment layer before exposing the model as a service. It will be highly compliant with any requests, even unethical ones. Please read my blog post about uncensored models. https://erichartford.com/uncensored-models You are responsible for any content you create using this model. Enjoy responsibly.
Dolphin is licensed according to Meta's Llama license. We grant permission for any use, including commercial, that falls within accordance with Meta's Llama-3 license. Dolphin was trained on data generated from GPT4, among other models.
Evals
Training
See axolotl config
axolotl version: 0.4.0
base_model: /workspace/axolotl/dbrx-checkpoint
model_type: AutoModelForCausalLM
tokenizer_type: AutoTokenizer
trust_remote_code: true
load_in_8bit: false
# load_in_4bit: true
strict: false
# adapter: qlora
# lora_modules_to_save: [embed_tokens, lm_head]
# lora_r: 32
# lora_alpha: 16
# lora_dropout: 0.05
# lora_target_linear: false
# lora_fan_in_fan_out:
datasets:
- path: /workspace/datasets/dolphin-2.9/dolphin201-sharegpt2.jsonl
type: sharegpt
conversation: chatml
# - path: /workspace/datasets/dolphin-2.9/Ultrachat200kunfiltered.jsonl
# type: sharegpt
# conversation: chatml
- path: /workspace/datasets/dolphin-2.9/dolphin-coder-translate-sharegpt2.jsonl
type: sharegpt
conversation: chatml
- path: /workspace/datasets/dolphin-2.9/dolphin-coder-codegen-sharegpt2.jsonl
type: sharegpt
conversation: chatml
- path: /workspace/datasets/dolphin-2.9/m-a-p_Code-Feedback-sharegpt-unfiltered.jsonl
type: sharegpt
conversation: chatml
- path: /workspace/datasets/dolphin-2.9/m-a-p_CodeFeedback-Filtered-Instruction-sharegpt-unfiltered.jsonl
type: sharegpt
conversation: chatml
- path: /workspace/datasets/dolphin-2.9/not_samantha_norefusals.jsonl
type: sharegpt
conversation: chatml
- path: /workspace/datasets/dolphin-2.9/Orca-Math-resort-unfiltered.jsonl
type: sharegpt
conversation: chatml
- path: /workspace/datasets/dolphin-2.9/agent_instruct_react_unfiltered.jsonl
type: sharegpt
conversation: chatml
- path: /workspace/datasets/dolphin-2.9/toolbench_instruct_j1s1_3k_unfiltered.jsonl
type: sharegpt
conversation: chatml
- path: /workspace/datasets/dolphin-2.9/toolbench_negative_unfiltered.jsonl
type: sharegpt
conversation: chatml
- path: /workspace/datasets/dolphin-2.9/toolbench_react_10p_unfiltered.jsonl
type: sharegpt
conversation: chatml
- path: /workspace/datasets/dolphin-2.9/toolbench_tflan_cot_30p_unfiltered.jsonl
type: sharegpt
conversation: chatml
- path: /workspace/datasets/dolphin-2.9/openhermes200k_unfiltered.jsonl
type: sharegpt
conversation: chatml
# - path: /workspace/datasets/dolphin-2.9/SystemConversations.jsonl
# type: sharegpt
# conversation: chatml
chat_template: chatml
unfrozen_parameters:
- ^lm_head.weight$
# ffn.experts.mlp_experts.0.v1 layers
- transformer.blocks.30.ffn.experts.mlp_experts.0.v1
- transformer.blocks.32.ffn.experts.mlp_experts.0.v1
- transformer.blocks.25.ffn.experts.mlp_experts.0.v1
- transformer.blocks.15.ffn.experts.mlp_experts.0.v1
- transformer.blocks.22.ffn.experts.mlp_experts.0.v1
- transformer.blocks.31.ffn.experts.mlp_experts.0.v1
- transformer.blocks.7.ffn.experts.mlp_experts.0.v1
- transformer.blocks.21.ffn.experts.mlp_experts.0.v1
- transformer.blocks.8.ffn.experts.mlp_experts.0.v1
- transformer.blocks.23.ffn.experts.mlp_experts.0.v1
# ffn.experts.mlp_experts.0.w1 layers
- transformer.blocks.7.ffn.experts.mlp_experts.0.w1
- transformer.blocks.8.ffn.experts.mlp_experts.0.w1
- transformer.blocks.30.ffn.experts.mlp_experts.0.w1
- transformer.blocks.4.ffn.experts.mlp_experts.0.w1
- transformer.blocks.0.ffn.experts.mlp_experts.0.w1
- transformer.blocks.32.ffn.experts.mlp_experts.0.w1
- transformer.blocks.6.ffn.experts.mlp_experts.0.w1
- transformer.blocks.3.ffn.experts.mlp_experts.0.w1
- transformer.blocks.25.ffn.experts.mlp_experts.0.w1
- transformer.blocks.5.ffn.experts.mlp_experts.0.w1
# ffn.experts.mlp_experts.0.w2 layers
- transformer.blocks.25.ffn.experts.mlp_experts.0.w2
- transformer.blocks.22.ffn.experts.mlp_experts.0.w2
- transformer.blocks.27.ffn.experts.mlp_experts.0.w2
- transformer.blocks.26.ffn.experts.mlp_experts.0.w2
- transformer.blocks.4.ffn.experts.mlp_experts.0.w2
- transformer.blocks.29.ffn.experts.mlp_experts.0.w2
- transformer.blocks.32.ffn.experts.mlp_experts.0.w2
- transformer.blocks.5.ffn.experts.mlp_experts.0.w2
- transformer.blocks.7.ffn.experts.mlp_experts.0.w2
- transformer.blocks.3.ffn.experts.mlp_experts.0.w2
# ffn.experts.mlp_experts.1.v1 layers
- transformer.blocks.27.ffn.experts.mlp_experts.1.v1
- transformer.blocks.25.ffn.experts.mlp_experts.1.v1
- transformer.blocks.29.ffn.experts.mlp_experts.1.v1
- transformer.blocks.33.ffn.experts.mlp_experts.1.v1
- transformer.blocks.23.ffn.experts.mlp_experts.1.v1
- transformer.blocks.30.ffn.experts.mlp_experts.1.v1
- transformer.blocks.6.ffn.experts.mlp_experts.1.v1
- transformer.blocks.21.ffn.experts.mlp_experts.1.v1
- transformer.blocks.15.ffn.experts.mlp_experts.1.v1
- transformer.blocks.7.ffn.experts.mlp_experts.1.v1
# ffn.experts.mlp_experts.1.w1 layers
- transformer.blocks.0.ffn.experts.mlp_experts.1.w1
- transformer.blocks.6.ffn.experts.mlp_experts.1.w1
- transformer.blocks.7.ffn.experts.mlp_experts.1.w1
- transformer.blocks.4.ffn.experts.mlp_experts.1.w1
- transformer.blocks.8.ffn.experts.mlp_experts.1.w1
- transformer.blocks.29.ffn.experts.mlp_experts.1.w1
- transformer.blocks.33.ffn.experts.mlp_experts.1.w1
- transformer.blocks.27.ffn.experts.mlp_experts.1.w1
- transformer.blocks.1.ffn.experts.mlp_experts.1.w1
- transformer.blocks.10.ffn.experts.mlp_experts.1.w1
# ffn.experts.mlp_experts.1.w2 layers
- transformer.blocks.25.ffn.experts.mlp_experts.1.w2
- transformer.blocks.23.ffn.experts.mlp_experts.1.w2
- transformer.blocks.27.ffn.experts.mlp_experts.1.w2
- transformer.blocks.29.ffn.experts.mlp_experts.1.w2
- transformer.blocks.31.ffn.experts.mlp_experts.1.w2
- transformer.blocks.4.ffn.experts.mlp_experts.1.w2
- transformer.blocks.32.ffn.experts.mlp_experts.1.w2
- transformer.blocks.30.ffn.experts.mlp_experts.1.w2
- transformer.blocks.21.ffn.experts.mlp_experts.1.w2
- transformer.blocks.33.ffn.experts.mlp_experts.1.w2
# ffn.experts.mlp_experts.10.v1 layers
- transformer.blocks.28.ffn.experts.mlp_experts.10.v1
- transformer.blocks.34.ffn.experts.mlp_experts.10.v1
- transformer.blocks.33.ffn.experts.mlp_experts.10.v1
- transformer.blocks.26.ffn.experts.mlp_experts.10.v1
- transformer.blocks.32.ffn.experts.mlp_experts.10.v1
- transformer.blocks.30.ffn.experts.mlp_experts.10.v1
- transformer.blocks.36.ffn.experts.mlp_experts.10.v1
- transformer.blocks.24.ffn.experts.mlp_experts.10.v1
- transformer.blocks.20.ffn.experts.mlp_experts.10.v1
- transformer.blocks.35.ffn.experts.mlp_experts.10.v1
# ffn.experts.mlp_experts.10.w1 layers
- transformer.blocks.24.ffn.experts.mlp_experts.10.w1
- transformer.blocks.33.ffn.experts.mlp_experts.10.w1
- transformer.blocks.8.ffn.experts.mlp_experts.10.w1
- transformer.blocks.7.ffn.experts.mlp_experts.10.w1
- transformer.blocks.34.ffn.experts.mlp_experts.10.w1
- transformer.blocks.28.ffn.experts.mlp_experts.10.w1
- transformer.blocks.30.ffn.experts.mlp_experts.10.w1
- transformer.blocks.1.ffn.experts.mlp_experts.10.w1
- transformer.blocks.3.ffn.experts.mlp_experts.10.w1
- transformer.blocks.5.ffn.experts.mlp_experts.10.w1
# ffn.experts.mlp_experts.10.w2 layers
- transformer.blocks.24.ffn.experts.mlp_experts.10.w2
- transformer.blocks.28.ffn.experts.mlp_experts.10.w2
- transformer.blocks.23.ffn.experts.mlp_experts.10.w2
- transformer.blocks.30.ffn.experts.mlp_experts.10.w2
- transformer.blocks.32.ffn.experts.mlp_experts.10.w2
- transformer.blocks.3.ffn.experts.mlp_experts.10.w2
- transformer.blocks.33.ffn.experts.mlp_experts.10.w2
- transformer.blocks.26.ffn.experts.mlp_experts.10.w2
- transformer.blocks.2.ffn.experts.mlp_experts.10.w2
- transformer.blocks.20.ffn.experts.mlp_experts.10.w2
# ffn.experts.mlp_experts.11.w1 layers
- transformer.blocks.6.ffn.experts.mlp_experts.11.w1
- transformer.blocks.8.ffn.experts.mlp_experts.11.w1
- transformer.blocks.9.ffn.experts.mlp_experts.11.w1
- transformer.blocks.0.ffn.experts.mlp_experts.11.w1
- transformer.blocks.10.ffn.experts.mlp_experts.11.w1
- transformer.blocks.28.ffn.experts.mlp_experts.11.w1
- transformer.blocks.3.ffn.experts.mlp_experts.11.w1
- transformer.blocks.5.ffn.experts.mlp_experts.11.w1
- transformer.blocks.33.ffn.experts.mlp_experts.11.w1
- transformer.blocks.13.ffn.experts.mlp_experts.11.w1
# ffn.experts.mlp_experts.11.w2 layers
- transformer.blocks.27.ffn.experts.mlp_experts.11.w2
- transformer.blocks.24.ffn.experts.mlp_experts.11.w2
- transformer.blocks.29.ffn.experts.mlp_experts.11.w2
- transformer.blocks.30.ffn.experts.mlp_experts.11.w2
- transformer.blocks.22.ffn.experts.mlp_experts.11.w2
- transformer.blocks.6.ffn.experts.mlp_experts.11.w2
- transformer.blocks.25.ffn.experts.mlp_experts.11.w2
- transformer.blocks.7.ffn.experts.mlp_experts.11.w2
- transformer.blocks.28.ffn.experts.mlp_experts.11.w2
- transformer.blocks.5.ffn.experts.mlp_experts.11.w2
# ffn.experts.mlp_experts.12.v1 layers
- transformer.blocks.30.ffn.experts.mlp_experts.12.v1
- transformer.blocks.21.ffn.experts.mlp_experts.12.v1
- transformer.blocks.27.ffn.experts.mlp_experts.12.v1
- transformer.blocks.28.ffn.experts.mlp_experts.12.v1
- transformer.blocks.29.ffn.experts.mlp_experts.12.v1
- transformer.blocks.8.ffn.experts.mlp_experts.12.v1
- transformer.blocks.10.ffn.experts.mlp_experts.12.v1
- transformer.blocks.23.ffn.experts.mlp_experts.12.v1
- transformer.blocks.6.ffn.experts.mlp_experts.12.v1
- transformer.blocks.20.ffn.experts.mlp_experts.12.v1
# ffn.experts.mlp_experts.12.w1 layers
- transformer.blocks.8.ffn.experts.mlp_experts.12.w1
- transformer.blocks.1.ffn.experts.mlp_experts.12.w1
- transformer.blocks.0.ffn.experts.mlp_experts.12.w1
- transformer.blocks.6.ffn.experts.mlp_experts.12.w1
- transformer.blocks.9.ffn.experts.mlp_experts.12.w1
- transformer.blocks.2.ffn.experts.mlp_experts.12.w1
- transformer.blocks.10.ffn.experts.mlp_experts.12.w1
- transformer.blocks.17.ffn.experts.mlp_experts.12.w1
- transformer.blocks.29.ffn.experts.mlp_experts.12.w1
- transformer.blocks.21.ffn.experts.mlp_experts.12.w1
# ffn.experts.mlp_experts.12.w2 layers
- transformer.blocks.6.ffn.experts.mlp_experts.12.w2
- transformer.blocks.25.ffn.experts.mlp_experts.12.w2
- transformer.blocks.27.ffn.experts.mlp_experts.12.w2
- transformer.blocks.8.ffn.experts.mlp_experts.12.w2
- transformer.blocks.31.ffn.experts.mlp_experts.12.w2
- transformer.blocks.21.ffn.experts.mlp_experts.12.w2
- transformer.blocks.2.ffn.experts.mlp_experts.12.w2
- transformer.blocks.29.ffn.experts.mlp_experts.12.w2
- transformer.blocks.32.ffn.experts.mlp_experts.12.w2
- transformer.blocks.30.ffn.experts.mlp_experts.12.w2
# ffn.experts.mlp_experts.13.v1 layers
- transformer.blocks.31.ffn.experts.mlp_experts.13.v1
- transformer.blocks.24.ffn.experts.mlp_experts.13.v1
- transformer.blocks.30.ffn.experts.mlp_experts.13.v1
- transformer.blocks.29.ffn.experts.mlp_experts.13.v1
- transformer.blocks.8.ffn.experts.mlp_experts.13.v1
- transformer.blocks.10.ffn.experts.mlp_experts.13.v1
- transformer.blocks.11.ffn.experts.mlp_experts.13.v1
- transformer.blocks.27.ffn.experts.mlp_experts.13.v1
- transformer.blocks.25.ffn.experts.mlp_experts.13.v1
- transformer.blocks.36.ffn.experts.mlp_experts.13.v1
# ffn.experts.mlp_experts.13.w1 layers
- transformer.blocks.4.ffn.experts.mlp_experts.13.w1
- transformer.blocks.10.ffn.experts.mlp_experts.13.w1
- transformer.blocks.6.ffn.experts.mlp_experts.13.w1
- transformer.blocks.0.ffn.experts.mlp_experts.13.w1
- transformer.blocks.3.ffn.experts.mlp_experts.13.w1
- transformer.blocks.24.ffn.experts.mlp_experts.13.w1
- transformer.blocks.8.ffn.experts.mlp_experts.13.w1
- transformer.blocks.1.ffn.experts.mlp_experts.13.w1
- transformer.blocks.30.ffn.experts.mlp_experts.13.w1
- transformer.blocks.11.ffn.experts.mlp_experts.13.w1
# ffn.experts.mlp_experts.13.w2 layers
- transformer.blocks.24.ffn.experts.mlp_experts.13.w2
- transformer.blocks.20.ffn.experts.mlp_experts.13.w2
- transformer.blocks.25.ffn.experts.mlp_experts.13.w2
- transformer.blocks.27.ffn.experts.mlp_experts.13.w2
- transformer.blocks.3.ffn.experts.mlp_experts.13.w2
- transformer.blocks.4.ffn.experts.mlp_experts.13.w2
- transformer.blocks.29.ffn.experts.mlp_experts.13.w2
- transformer.blocks.6.ffn.experts.mlp_experts.13.w2
- transformer.blocks.30.ffn.experts.mlp_experts.13.w2
- transformer.blocks.31.ffn.experts.mlp_experts.13.w2
# ffn.experts.mlp_experts.14.v1 layers
- transformer.blocks.28.ffn.experts.mlp_experts.14.v1
- transformer.blocks.26.ffn.experts.mlp_experts.14.v1
- transformer.blocks.29.ffn.experts.mlp_experts.14.v1
- transformer.blocks.35.ffn.experts.mlp_experts.14.v1
- transformer.blocks.24.ffn.experts.mlp_experts.14.v1
- transformer.blocks.8.ffn.experts.mlp_experts.14.v1
- transformer.blocks.32.ffn.experts.mlp_experts.14.v1
- transformer.blocks.15.ffn.experts.mlp_experts.14.v1
- transformer.blocks.11.ffn.experts.mlp_experts.14.v1
- transformer.blocks.22.ffn.experts.mlp_experts.14.v1
# ffn.experts.mlp_experts.14.w1 layers
- transformer.blocks.8.ffn.experts.mlp_experts.14.w1
- transformer.blocks.4.ffn.experts.mlp_experts.14.w1
- transformer.blocks.5.ffn.experts.mlp_experts.14.w1
- transformer.blocks.7.ffn.experts.mlp_experts.14.w1
- transformer.blocks.3.ffn.experts.mlp_experts.14.w1
- transformer.blocks.13.ffn.experts.mlp_experts.14.w1
- transformer.blocks.29.ffn.experts.mlp_experts.14.w1
- transformer.blocks.6.ffn.experts.mlp_experts.14.w1
- transformer.blocks.28.ffn.experts.mlp_experts.14.w1
- transformer.blocks.9.ffn.experts.mlp_experts.14.w1
# ffn.experts.mlp_experts.14.w2 layers
- transformer.blocks.26.ffn.experts.mlp_experts.14.w2
- transformer.blocks.24.ffn.experts.mlp_experts.14.w2
- transformer.blocks.29.ffn.experts.mlp_experts.14.w2
- transformer.blocks.28.ffn.experts.mlp_experts.14.w2
- transformer.blocks.31.ffn.experts.mlp_experts.14.w2
- transformer.blocks.5.ffn.experts.mlp_experts.14.w2
- transformer.blocks.4.ffn.experts.mlp_experts.14.w2
- transformer.blocks.32.ffn.experts.mlp_experts.14.w2
- transformer.blocks.6.ffn.experts.mlp_experts.14.w2
- transformer.blocks.22.ffn.experts.mlp_experts.14.w2
# ffn.experts.mlp_experts.15.v1 layers
- transformer.blocks.33.ffn.experts.mlp_experts.15.v1
- transformer.blocks.26.ffn.experts.mlp_experts.15.v1
- transformer.blocks.31.ffn.experts.mlp_experts.15.v1
- transformer.blocks.28.ffn.experts.mlp_experts.15.v1
- transformer.blocks.9.ffn.experts.mlp_experts.15.v1
- transformer.blocks.34.ffn.experts.mlp_experts.15.v1
- transformer.blocks.29.ffn.experts.mlp_experts.15.v1
- transformer.blocks.7.ffn.experts.mlp_experts.15.v1
- transformer.blocks.17.ffn.experts.mlp_experts.15.v1
- transformer.blocks.15.ffn.experts.mlp_experts.15.v1
# ffn.experts.mlp_experts.15.w1 layers
- transformer.blocks.6.ffn.experts.mlp_experts.15.w1
- transformer.blocks.9.ffn.experts.mlp_experts.15.w1
- transformer.blocks.0.ffn.experts.mlp_experts.15.w1
- transformer.blocks.7.ffn.experts.mlp_experts.15.w1
- transformer.blocks.14.ffn.experts.mlp_experts.15.w1
- transformer.blocks.33.ffn.experts.mlp_experts.15.w1
- transformer.blocks.34.ffn.experts.mlp_experts.15.w1
- transformer.blocks.10.ffn.experts.mlp_experts.15.w1
- transformer.blocks.5.ffn.experts.mlp_experts.15.w1
- transformer.blocks.29.ffn.experts.mlp_experts.15.w1
# ffn.experts.mlp_experts.15.w2 layers
- transformer.blocks.28.ffn.experts.mlp_experts.15.w2
- transformer.blocks.26.ffn.experts.mlp_experts.15.w2
- transformer.blocks.27.ffn.experts.mlp_experts.15.w2
- transformer.blocks.29.ffn.experts.mlp_experts.15.w2
- transformer.blocks.6.ffn.experts.mlp_experts.15.w2
- transformer.blocks.31.ffn.experts.mlp_experts.15.w2
- transformer.blocks.7.ffn.experts.mlp_experts.15.w2
- transformer.blocks.33.ffn.experts.mlp_experts.15.w2
- transformer.blocks.32.ffn.experts.mlp_experts.15.w2
- transformer.blocks.25.ffn.experts.mlp_experts.15.w2
# ffn.experts.mlp_experts.2.v1 layers
- transformer.blocks.31.ffn.experts.mlp_experts.2.v1
- transformer.blocks.27.ffn.experts.mlp_experts.2.v1
- transformer.blocks.28.ffn.experts.mlp_experts.2.v1
- transformer.blocks.30.ffn.experts.mlp_experts.2.v1
- transformer.blocks.23.ffn.experts.mlp_experts.2.v1
- transformer.blocks.32.ffn.experts.mlp_experts.2.v1
- transformer.blocks.35.ffn.experts.mlp_experts.2.v1
- transformer.blocks.7.ffn.experts.mlp_experts.2.v1
- transformer.blocks.21.ffn.experts.mlp_experts.2.v1
- transformer.blocks.15.ffn.experts.mlp_experts.2.v1
# ffn.experts.mlp_experts.2.w1 layers
- transformer.blocks.7.ffn.experts.mlp_experts.2.w1
- transformer.blocks.6.ffn.experts.mlp_experts.2.w1
- transformer.blocks.1.ffn.experts.mlp_experts.2.w1
- transformer.blocks.4.ffn.experts.mlp_experts.2.w1
- transformer.blocks.5.ffn.experts.mlp_experts.2.w1
- transformer.blocks.29.ffn.experts.mlp_experts.2.w1
- transformer.blocks.0.ffn.experts.mlp_experts.2.w1
- transformer.blocks.9.ffn.experts.mlp_experts.2.w1
- transformer.blocks.31.ffn.experts.mlp_experts.2.w1
- transformer.blocks.30.ffn.experts.mlp_experts.2.w1
# ffn.experts.mlp_experts.2.w2 layers
- transformer.blocks.26.ffn.experts.mlp_experts.2.w2
- transformer.blocks.27.ffn.experts.mlp_experts.2.w2
- transformer.blocks.33.ffn.experts.mlp_experts.2.w2
- transformer.blocks.5.ffn.experts.mlp_experts.2.w2
- transformer.blocks.23.ffn.experts.mlp_experts.2.w2
- transformer.blocks.32.ffn.experts.mlp_experts.2.w2
- transformer.blocks.28.ffn.experts.mlp_experts.2.w2
- transformer.blocks.4.ffn.experts.mlp_experts.2.w2
- transformer.blocks.29.ffn.experts.mlp_experts.2.w2
- transformer.blocks.30.ffn.experts.mlp_experts.2.w2
# ffn.experts.mlp_experts.3.v1 layers
- transformer.blocks.28.ffn.experts.mlp_experts.3.v1
- transformer.blocks.33.ffn.experts.mlp_experts.3.v1
- transformer.blocks.36.ffn.experts.mlp_experts.3.v1
- transformer.blocks.29.ffn.experts.mlp_experts.3.v1
- transformer.blocks.30.ffn.experts.mlp_experts.3.v1
- transformer.blocks.7.ffn.experts.mlp_experts.3.v1
- transformer.blocks.14.ffn.experts.mlp_experts.3.v1
- transformer.blocks.10.ffn.experts.mlp_experts.3.v1
- transformer.blocks.31.ffn.experts.mlp_experts.3.v1
- transformer.blocks.21.ffn.experts.mlp_experts.3.v1
# ffn.experts.mlp_experts.3.w1 layers
- transformer.blocks.7.ffn.experts.mlp_experts.3.w1
- transformer.blocks.0.ffn.experts.mlp_experts.3.w1
- transformer.blocks.10.ffn.experts.mlp_experts.3.w1
- transformer.blocks.9.ffn.experts.mlp_experts.3.w1
- transformer.blocks.29.ffn.experts.mlp_experts.3.w1
- transformer.blocks.5.ffn.experts.mlp_experts.3.w1
- transformer.blocks.30.ffn.experts.mlp_experts.3.w1
- transformer.blocks.4.ffn.experts.mlp_experts.3.w1
- transformer.blocks.33.ffn.experts.mlp_experts.3.w1
- transformer.blocks.1.ffn.experts.mlp_experts.3.w1
# ffn.experts.mlp_experts.3.w2 layers
- transformer.blocks.28.ffn.experts.mlp_experts.3.w2
- transformer.blocks.5.ffn.experts.mlp_experts.3.w2
- transformer.blocks.24.ffn.experts.mlp_experts.3.w2
- transformer.blocks.31.ffn.experts.mlp_experts.3.w2
- transformer.blocks.30.ffn.experts.mlp_experts.3.w2
- transformer.blocks.21.ffn.experts.mlp_experts.3.w2
- transformer.blocks.32.ffn.experts.mlp_experts.3.w2
- transformer.blocks.29.ffn.experts.mlp_experts.3.w2
- transformer.blocks.26.ffn.experts.mlp_experts.3.w2
- transformer.blocks.2.ffn.experts.mlp_experts.3.w2
# ffn.experts.mlp_experts.4.v1 layers
- transformer.blocks.34.ffn.experts.mlp_experts.4.v1
- transformer.blocks.31.ffn.experts.mlp_experts.4.v1
- transformer.blocks.26.ffn.experts.mlp_experts.4.v1
- transformer.blocks.24.ffn.experts.mlp_experts.4.v1
- transformer.blocks.14.ffn.experts.mlp_experts.4.v1
- transformer.blocks.32.ffn.experts.mlp_experts.4.v1
- transformer.blocks.7.ffn.experts.mlp_experts.4.v1
- transformer.blocks.6.ffn.experts.mlp_experts.4.v1
- transformer.blocks.20.ffn.experts.mlp_experts.4.v1
- transformer.blocks.9.ffn.experts.mlp_experts.4.v1
# ffn.experts.mlp_experts.4.w1 layers
- transformer.blocks.6.ffn.experts.mlp_experts.4.w1
- transformer.blocks.4.ffn.experts.mlp_experts.4.w1
- transformer.blocks.7.ffn.experts.mlp_experts.4.w1
- transformer.blocks.9.ffn.experts.mlp_experts.4.w1
- transformer.blocks.0.ffn.experts.mlp_experts.4.w1
- transformer.blocks.5.ffn.experts.mlp_experts.4.w1
- transformer.blocks.14.ffn.experts.mlp_experts.4.w1
- transformer.blocks.34.ffn.experts.mlp_experts.4.w1
- transformer.blocks.8.ffn.experts.mlp_experts.4.w1
- transformer.blocks.29.ffn.experts.mlp_experts.4.w1
# ffn.experts.mlp_experts.4.w2 layers
- transformer.blocks.25.ffn.experts.mlp_experts.4.w2
- transformer.blocks.24.ffn.experts.mlp_experts.4.w2
- transformer.blocks.26.ffn.experts.mlp_experts.4.w2
- transformer.blocks.5.ffn.experts.mlp_experts.4.w2
- transformer.blocks.6.ffn.experts.mlp_experts.4.w2
- transformer.blocks.32.ffn.experts.mlp_experts.4.w2
- transformer.blocks.4.ffn.experts.mlp_experts.4.w2
- transformer.blocks.36.ffn.experts.mlp_experts.4.w2
- transformer.blocks.29.ffn.experts.mlp_experts.4.w2
- transformer.blocks.27.ffn.experts.mlp_experts.4.w2
# ffn.experts.mlp_experts.5.v1 layers
- transformer.blocks.35.ffn.experts.mlp_experts.5.v1
- transformer.blocks.30.ffn.experts.mlp_experts.5.v1
- transformer.blocks.28.ffn.experts.mlp_experts.5.v1
- transformer.blocks.32.ffn.experts.mlp_experts.5.v1
- transformer.blocks.27.ffn.experts.mlp_experts.5.v1
- transformer.blocks.26.ffn.experts.mlp_experts.5.v1
- transformer.blocks.33.ffn.experts.mlp_experts.5.v1
- transformer.blocks.29.ffn.experts.mlp_experts.5.v1
- transformer.blocks.8.ffn.experts.mlp_experts.5.v1
- transformer.blocks.7.ffn.experts.mlp_experts.5.v1
# ffn.experts.mlp_experts.5.w1 layers
- transformer.blocks.0.ffn.experts.mlp_experts.5.w1
- transformer.blocks.6.ffn.experts.mlp_experts.5.w1
- transformer.blocks.7.ffn.experts.mlp_experts.5.w1
- transformer.blocks.9.ffn.experts.mlp_experts.5.w1
- transformer.blocks.8.ffn.experts.mlp_experts.5.w1
- transformer.blocks.12.ffn.experts.mlp_experts.5.w1
- transformer.blocks.3.ffn.experts.mlp_experts.5.w1
- transformer.blocks.5.ffn.experts.mlp_experts.5.w1
- transformer.blocks.4.ffn.experts.mlp_experts.5.w1
- transformer.blocks.33.ffn.experts.mlp_experts.5.w1
# ffn.experts.mlp_experts.5.w2 layers
- transformer.blocks.26.ffn.experts.mlp_experts.5.w2
- transformer.blocks.28.ffn.experts.mlp_experts.5.w2
- transformer.blocks.6.ffn.experts.mlp_experts.5.w2
- transformer.blocks.33.ffn.experts.mlp_experts.5.w2
- transformer.blocks.5.ffn.experts.mlp_experts.5.w2
- transformer.blocks.27.ffn.experts.mlp_experts.5.w2
- transformer.blocks.3.ffn.experts.mlp_experts.5.w2
- transformer.blocks.29.ffn.experts.mlp_experts.5.w2
- transformer.blocks.25.ffn.experts.mlp_experts.5.w2
- transformer.blocks.7.ffn.experts.mlp_experts.5.w2
# ffn.experts.mlp_experts.6.v1 layers
- transformer.blocks.34.ffn.experts.mlp_experts.6.v1
- transformer.blocks.31.ffn.experts.mlp_experts.6.v1
- transformer.blocks.30.ffn.experts.mlp_experts.6.v1
- transformer.blocks.26.ffn.experts.mlp_experts.6.v1
- transformer.blocks.35.ffn.experts.mlp_experts.6.v1
- transformer.blocks.20.ffn.experts.mlp_experts.6.v1
- transformer.blocks.15.ffn.experts.mlp_experts.6.v1
- transformer.blocks.29.ffn.experts.mlp_experts.6.v1
- transformer.blocks.10.ffn.experts.mlp_experts.6.v1
- transformer.blocks.24.ffn.experts.mlp_experts.6.v1
# ffn.experts.mlp_experts.6.w1 layers
- transformer.blocks.0.ffn.experts.mlp_experts.6.w1
- transformer.blocks.10.ffn.experts.mlp_experts.6.w1
- transformer.blocks.9.ffn.experts.mlp_experts.6.w1
- transformer.blocks.30.ffn.experts.mlp_experts.6.w1
- transformer.blocks.4.ffn.experts.mlp_experts.6.w1
- transformer.blocks.34.ffn.experts.mlp_experts.6.w1
- transformer.blocks.26.ffn.experts.mlp_experts.6.w1
- transformer.blocks.2.ffn.experts.mlp_experts.6.w1
- transformer.blocks.29.ffn.experts.mlp_experts.6.w1
- transformer.blocks.8.ffn.experts.mlp_experts.6.w1
# ffn.experts.mlp_experts.6.w2 layers
- transformer.blocks.24.ffn.experts.mlp_experts.6.w2
- transformer.blocks.26.ffn.experts.mlp_experts.6.w2
- transformer.blocks.32.ffn.experts.mlp_experts.6.w2
- transformer.blocks.30.ffn.experts.mlp_experts.6.w2
- transformer.blocks.25.ffn.experts.mlp_experts.6.w2
- transformer.blocks.31.ffn.experts.mlp_experts.6.w2
- transformer.blocks.20.ffn.experts.mlp_experts.6.w2
- transformer.blocks.4.ffn.experts.mlp_experts.6.w2
- transformer.blocks.2.ffn.experts.mlp_experts.6.w2
- transformer.blocks.9.ffn.experts.mlp_experts.6.w2
# ffn.experts.mlp_experts.7.v1 layers
- transformer.blocks.27.ffn.experts.mlp_experts.7.v1
- transformer.blocks.28.ffn.experts.mlp_experts.7.v1
- transformer.blocks.33.ffn.experts.mlp_experts.7.v1
- transformer.blocks.29.ffn.experts.mlp_experts.7.v1
- transformer.blocks.24.ffn.experts.mlp_experts.7.v1
- transformer.blocks.11.ffn.experts.mlp_experts.7.v1
- transformer.blocks.12.ffn.experts.mlp_experts.7.v1
- transformer.blocks.10.ffn.experts.mlp_experts.7.v1
- transformer.blocks.23.ffn.experts.mlp_experts.7.v1
- transformer.blocks.34.ffn.experts.mlp_experts.7.v1
# ffn.experts.mlp_experts.7.w1 layers
- transformer.blocks.12.ffn.experts.mlp_experts.7.w1
- transformer.blocks.0.ffn.experts.mlp_experts.7.w1
- transformer.blocks.5.ffn.experts.mlp_experts.7.w1
- transformer.blocks.29.ffn.experts.mlp_experts.7.w1
- transformer.blocks.10.ffn.experts.mlp_experts.7.w1
- transformer.blocks.4.ffn.experts.mlp_experts.7.w1
- transformer.blocks.3.ffn.experts.mlp_experts.7.w1
- transformer.blocks.8.ffn.experts.mlp_experts.7.w1
- transformer.blocks.34.ffn.experts.mlp_experts.7.w1
- transformer.blocks.33.ffn.experts.mlp_experts.7.w1
# ffn.experts.mlp_experts.7.w2 layers
- transformer.blocks.23.ffn.experts.mlp_experts.7.w2
- transformer.blocks.24.ffn.experts.mlp_experts.7.w2
- transformer.blocks.31.ffn.experts.mlp_experts.7.w2
- transformer.blocks.28.ffn.experts.mlp_experts.7.w2
- transformer.blocks.27.ffn.experts.mlp_experts.7.w2
- transformer.blocks.5.ffn.experts.mlp_experts.7.w2
- transformer.blocks.25.ffn.experts.mlp_experts.7.w2
- transformer.blocks.29.ffn.experts.mlp_experts.7.w2
- transformer.blocks.3.ffn.experts.mlp_experts.7.w2
- transformer.blocks.33.ffn.experts.mlp_experts.7.w2
# ffn.experts.mlp_experts.8.v1 layers
- transformer.blocks.30.ffn.experts.mlp_experts.8.v1
- transformer.blocks.27.ffn.experts.mlp_experts.8.v1
- transformer.blocks.20.ffn.experts.mlp_experts.8.v1
- transformer.blocks.32.ffn.experts.mlp_experts.8.v1
- transformer.blocks.34.ffn.experts.mlp_experts.8.v1
- transformer.blocks.33.ffn.experts.mlp_experts.8.v1
- transformer.blocks.9.ffn.experts.mlp_experts.8.v1
- transformer.blocks.7.ffn.experts.mlp_experts.8.v1
- transformer.blocks.6.ffn.experts.mlp_experts.8.v1
- transformer.blocks.24.ffn.experts.mlp_experts.8.v1
# ffn.experts.mlp_experts.8.w1 layers
- transformer.blocks.7.ffn.experts.mlp_experts.8.w1
- transformer.blocks.6.ffn.experts.mlp_experts.8.w1
- transformer.blocks.0.ffn.experts.mlp_experts.8.w1
- transformer.blocks.9.ffn.experts.mlp_experts.8.w1
- transformer.blocks.3.ffn.experts.mlp_experts.8.w1
- transformer.blocks.2.ffn.experts.mlp_experts.8.w1
- transformer.blocks.8.ffn.experts.mlp_experts.8.w1
- transformer.blocks.30.ffn.experts.mlp_experts.8.w1
- transformer.blocks.24.ffn.experts.mlp_experts.8.w1
- transformer.blocks.1.ffn.experts.mlp_experts.8.w1
# ffn.experts.mlp_experts.8.w2 layers
- transformer.blocks.32.ffn.experts.mlp_experts.8.w2
- transformer.blocks.24.ffn.experts.mlp_experts.8.w2
- transformer.blocks.27.ffn.experts.mlp_experts.8.w2
- transformer.blocks.30.ffn.experts.mlp_experts.8.w2
- transformer.blocks.31.ffn.experts.mlp_experts.8.w2
- transformer.blocks.28.ffn.experts.mlp_experts.8.w2
- transformer.blocks.2.ffn.experts.mlp_experts.8.w2
- transformer.blocks.3.ffn.experts.mlp_experts.8.w2
- transformer.blocks.23.ffn.experts.mlp_experts.8.w2
- transformer.blocks.29.ffn.experts.mlp_experts.8.w2
# ffn.experts.mlp_experts.9.v1 layers
- transformer.blocks.31.ffn.experts.mlp_experts.9.v1
- transformer.blocks.27.ffn.experts.mlp_experts.9.v1
- transformer.blocks.29.ffn.experts.mlp_experts.9.v1
- transformer.blocks.33.ffn.experts.mlp_experts.9.v1
- transformer.blocks.25.ffn.experts.mlp_experts.9.v1
- transformer.blocks.14.ffn.experts.mlp_experts.9.v1
- transformer.blocks.32.ffn.experts.mlp_experts.9.v1
- transformer.blocks.7.ffn.experts.mlp_experts.9.v1
- transformer.blocks.9.ffn.experts.mlp_experts.9.v1
- transformer.blocks.34.ffn.experts.mlp_experts.9.v1
# ffn.experts.mlp_experts.9.w1 layers
- transformer.blocks.7.ffn.experts.mlp_experts.9.w1
- transformer.blocks.1.ffn.experts.mlp_experts.9.w1
- transformer.blocks.9.ffn.experts.mlp_experts.9.w1
- transformer.blocks.2.ffn.experts.mlp_experts.9.w1
- transformer.blocks.27.ffn.experts.mlp_experts.9.w1
- transformer.blocks.12.ffn.experts.mlp_experts.9.w1
- transformer.blocks.4.ffn.experts.mlp_experts.9.w1
- transformer.blocks.6.ffn.experts.mlp_experts.9.w1
- transformer.blocks.19.ffn.experts.mlp_experts.9.w1
- transformer.blocks.8.ffn.experts.mlp_experts.9.w1
# ffn.experts.mlp_experts.9.w2 layers
- transformer.blocks.26.ffn.experts.mlp_experts.9.w2
- transformer.blocks.25.ffn.experts.mlp_experts.9.w2
- transformer.blocks.28.ffn.experts.mlp_experts.9.w2
- transformer.blocks.27.ffn.experts.mlp_experts.9.w2
- transformer.blocks.31.ffn.experts.mlp_experts.9.w2
- transformer.blocks.29.ffn.experts.mlp_experts.9.w2
- transformer.blocks.7.ffn.experts.mlp_experts.9.w2
- transformer.blocks.34.ffn.experts.mlp_experts.9.w2
- transformer.blocks.2.ffn.experts.mlp_experts.9.w2
- transformer.blocks.33.ffn.experts.mlp_experts.9.w2
# ffn.router.layer layers
- transformer.blocks.2.ffn.router.layer
- transformer.blocks.3.ffn.router.layer
- transformer.blocks.4.ffn.router.layer
- transformer.blocks.5.ffn.router.layer
- transformer.blocks.6.ffn.router.layer
- transformer.blocks.7.ffn.router.layer
- transformer.blocks.8.ffn.router.layer
- transformer.blocks.9.ffn.router.layer
- transformer.blocks.10.ffn.router.layer
- transformer.blocks.11.ffn.router.layer
# norm_attn_norm.attn.Wqkv layers
- transformer.blocks.16.norm_attn_norm.attn.Wqkv
- transformer.blocks.15.norm_attn_norm.attn.Wqkv
- transformer.blocks.11.norm_attn_norm.attn.Wqkv
- transformer.blocks.14.norm_attn_norm.attn.Wqkv
- transformer.blocks.12.norm_attn_norm.attn.Wqkv
- transformer.blocks.20.norm_attn_norm.attn.Wqkv
- transformer.blocks.10.norm_attn_norm.attn.Wqkv
- transformer.blocks.9.norm_attn_norm.attn.Wqkv
- transformer.blocks.19.norm_attn_norm.attn.Wqkv
- transformer.blocks.18.norm_attn_norm.attn.Wqkv
# norm_attn_norm.attn.out_proj layers
- transformer.blocks.1.norm_attn_norm.attn.out_proj
- transformer.blocks.18.norm_attn_norm.attn.out_proj
- transformer.blocks.2.norm_attn_norm.attn.out_proj
- transformer.blocks.16.norm_attn_norm.attn.out_proj
- transformer.blocks.0.norm_attn_norm.attn.out_proj
- transformer.blocks.39.norm_attn_norm.attn.out_proj
- transformer.blocks.23.norm_attn_norm.attn.out_proj
- transformer.blocks.8.norm_attn_norm.attn.out_proj
- transformer.blocks.24.norm_attn_norm.attn.out_proj
- transformer.blocks.19.norm_attn_norm.attn.out_proj
# norm_attn_norm.norm_1 layers
- transformer.blocks.0.norm_attn_norm.norm_1
- transformer.blocks.1.norm_attn_norm.norm_1
- transformer.blocks.2.norm_attn_norm.norm_1
- transformer.blocks.3.norm_attn_norm.norm_1
- transformer.blocks.4.norm_attn_norm.norm_1
- transformer.blocks.5.norm_attn_norm.norm_1
- transformer.blocks.6.norm_attn_norm.norm_1
- transformer.blocks.7.norm_attn_norm.norm_1
- transformer.blocks.8.norm_attn_norm.norm_1
- transformer.blocks.9.norm_attn_norm.norm_1
# norm_attn_norm.norm_2 layers
- transformer.blocks.0.norm_attn_norm.norm_2
- transformer.blocks.1.norm_attn_norm.norm_2
- transformer.blocks.2.norm_attn_norm.norm_2
- transformer.blocks.3.norm_attn_norm.norm_2
- transformer.blocks.4.norm_attn_norm.norm_2
- transformer.blocks.5.norm_attn_norm.norm_2
- transformer.blocks.6.norm_attn_norm.norm_2
- transformer.blocks.7.norm_attn_norm.norm_2
- transformer.blocks.8.norm_attn_norm.norm_2
- transformer.blocks.9.norm_attn_norm.norm_2
# transformer.norm_f layers
# transformer.wte layers
# ffn.experts.mlp_experts.11.v1 layers
- transformer.blocks.29.ffn.experts.mlp_experts.11.v1
- transformer.blocks.27.ffn.experts.mlp_experts.11.v1
- transformer.blocks.30.ffn.experts.mlp_experts.11.v1
- transformer.blocks.28.ffn.experts.mlp_experts.11.v1
- transformer.blocks.22.ffn.experts.mlp_experts.11.v1
- transformer.blocks.7.ffn.experts.mlp_experts.11.v1
- transformer.blocks.24.ffn.experts.mlp_experts.11.v1
- transformer.blocks.8.ffn.experts.mlp_experts.11.v1
- transformer.blocks.6.ffn.experts.mlp_experts.11.v1
- transformer.blocks.12.ffn.experts.mlp_experts.11.v1
dataset_prepared_path: dbrx2
val_set_size: 0.01
output_dir: ./out
sequence_len: 4096
sample_packing: true
pad_to_sequence_len: true
wandb_project: dolphin-2.9-Dbrx
wandb_watch:
wandb_run_id:
wandb_log_model:
gradient_accumulation_steps: 8
micro_batch_size: 1
num_epochs: 1
optimizer: paged_adamw_8bit
lr_scheduler: cosine
learning_rate: 1e-5
train_on_inputs: false
group_by_length: false
bf16: auto
fp16:
tf32: true
gradient_checkpointing: true
gradient_checkpointing_kwargs:
use_reentrant: false
early_stopping_patience:
# resume_from_checkpoint: /workspace/axolotl/dbrx-checkpoint
logging_steps: 1
xformers_attention:
flash_attention: true
warmup_steps: 10
evals_per_epoch: 4
eval_table_size:
saves_per_epoch: 4
save_total_limit: 2
save_steps:
debug:
deepspeed: /workspace/axolotl/deepspeed_configs/zero3_bf16_cpuoffload_params.json
weight_decay: 0.05
fsdp:
fsdp_config:
special_tokens:
bos_token: "<|endoftext|>"
eos_token: "<|im_end|>"
pad_token: "<|pad|>"
unk_token: "<|endoftext|>"
tokens:
- "<|im_start|>"
- "<|im_end|>"
out
This model was trained from scratch on the None dataset. It achieves the following results on the evaluation set:
- Loss: 0.4336
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 1e-05
- train_batch_size: 1
- eval_batch_size: 1
- seed: 42
- distributed_type: multi-GPU
- num_devices: 8
- gradient_accumulation_steps: 8
- total_train_batch_size: 64
- total_eval_batch_size: 8
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: cosine
- lr_scheduler_warmup_steps: 10
- num_epochs: 1
Training results
Training Loss | Epoch | Step | Validation Loss |
---|---|---|---|
0.4009 | 0.0 | 1 | 0.4328 |
0.413 | 0.25 | 587 | 0.4408 |
0.3626 | 0.5 | 1174 | 0.4368 |
0.3896 | 0.75 | 1761 | 0.4336 |
Framework versions
- Transformers 4.40.0.dev0
- Pytorch 2.2.2+cu121
- Datasets 2.15.0
- Tokenizers 0.15.0