File size: 28,141 Bytes
baa7639
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
---
base_model: Snowflake/snowflake-arctic-embed-m
library_name: sentence-transformers
metrics:
- cosine_accuracy@1
- cosine_accuracy@3
- cosine_accuracy@5
- cosine_accuracy@10
- cosine_precision@1
- cosine_precision@3
- cosine_precision@5
- cosine_precision@10
- cosine_recall@1
- cosine_recall@3
- cosine_recall@5
- cosine_recall@10
- cosine_ndcg@10
- cosine_mrr@10
- cosine_map@100
- dot_accuracy@1
- dot_accuracy@3
- dot_accuracy@5
- dot_accuracy@10
- dot_precision@1
- dot_precision@3
- dot_precision@5
- dot_precision@10
- dot_recall@1
- dot_recall@3
- dot_recall@5
- dot_recall@10
- dot_ndcg@10
- dot_mrr@10
- dot_map@100
pipeline_tag: sentence-similarity
tags:
- sentence-transformers
- sentence-similarity
- feature-extraction
- generated_from_trainer
- dataset_size:600
- loss:MatryoshkaLoss
- loss:MultipleNegativesRankingLoss
widget:
- source_sentence: How can organizations tailor their measurement of GAI risks based
    on specific characteristics?
  sentences:
  - "3 \nthe abuse, misuse, and unsafe repurposing by humans (adversarial or not),\
    \ and others result \nfrom interactions between a human and an AI system.  \n\
    • \nTime scale: GAI risks may materialize abruptly or across extended periods.\
    \ Examples include \nimmediate (and/or prolonged) emotional harm and potential\
    \ risks to physical safety due to the \ndistribution of harmful deepfake images,\
    \ or the long-term effect of disinformation on societal \ntrust in public institutions."
  - "12 \nCSAM. Even when trained on “clean” data, increasingly capable GAI models\
    \ can synthesize or produce \nsynthetic NCII and CSAM. Websites, mobile apps,\
    \ and custom-built models that generate synthetic NCII \nhave moved from niche\
    \ internet forums to mainstream, automated, and scaled online businesses.  \n\
    Trustworthy AI Characteristics: Fair with Harmful Bias Managed, Safe, Privacy\
    \ Enhanced \n2.12. \nValue Chain and Component Integration"
  - "case context. \nOrganizations may choose to tailor how they measure GAI risks\
    \ based on these characteristics. They may \nadditionally wish to allocate risk\
    \ management resources relative to the severity and likelihood of \nnegative impacts,\
    \ including where and how these risks manifest, and their direct and material\
    \ impacts \nharms in the context of GAI use. Mitigations for model or system level\
    \ risks may differ from mitigations \nfor use-case or ecosystem level risks."
- source_sentence: What methods are suggested for measuring the reliability of content
    authentication techniques in the context of content provenance?
  sentences:
  - "updates. \nInformation Integrity; Data Privacy \nMG-3.2-003 \nDocument sources\
    \ and types of training data and their origins, potential biases \npresent in\
    \ the data related to the GAI application and its content provenance, \narchitecture,\
    \ training process of the pre-trained model including information on \nhyperparameters,\
    \ training duration, and any fine-tuning or retrieval-augmented \ngeneration processes\
    \ applied. \nInformation Integrity; Harmful Bias \nand Homogenization; Intellectual\
    \ \nProperty"
  - "Security \nMS-2.7-005 \nMeasure reliability of content authentication methods,\
    \ such as watermarking, \ncryptographic signatures, digital fingerprints, as well\
    \ as access controls, \nconformity assessment, and model integrity verification,\
    \ which can help support \nthe effective implementation of content provenance techniques.\
    \ Evaluate the \nrate of false positives and false negatives in content provenance,\
    \ as well as true \npositives and true negatives for verification. \nInformation\
    \ Integrity \nMS-2.7-006"
  - "GV-1.6-003 \nIn addition to general model, governance, and risk information,\
    \ consider the \nfollowing items in GAI system inventory entries: Data provenance\
    \ information \n(e.g., source, signatures, versioning, watermarks); Known issues\
    \ reported from \ninternal bug tracking or external information sharing resources\
    \ (e.g., AI incident \ndatabase, AVID, CVE, NVD, or OECD AI incident monitor);\
    \ Human oversight roles \nand responsibilities; Special rights and considerations\
    \ for intellectual property,"
- source_sentence: What are the suggested actions an organization can take to manage
    GAI risks?
  sentences:
  - "Information Integrity; Dangerous, \nViolent, or Hateful Content; CBRN \nInformation\
    \ or Capabilities \nGV-1.3-007 Devise a plan to halt development or deployment\
    \ of a GAI system that poses \nunacceptable negative risk. \nCBRN Information\
    \ and Capability; \nInformation Security; Information \nIntegrity \nAI Actor Tasks:\
    \ Governance and Oversight \n \nGOVERN 1.4: The risk management process and its\
    \ outcomes are established through transparent policies, procedures, and other"
  - "match the statistical properties of real-world data without disclosing personally\
    \ \nidentifiable information or contributing to homogenization. \nData Privacy;\
    \ Intellectual Property; \nInformation Integrity; \nConfabulation; Harmful Bias\
    \ and \nHomogenization \nAI Actor Tasks: AI Deployment, AI Impact Assessment,\
    \ Governance and Oversight, Operation and Monitoring \n \nMANAGE 2.3: Procedures\
    \ are followed to respond to and recover from a previously unknown risk when it\
    \ is identified. \nAction ID"
  - "• \nSuggested Action: Steps an organization or AI actor can take to manage GAI\
    \ risks.  \n• \nGAI Risks: Tags linking suggested actions with relevant GAI risks.\
    \  \n• \nAI Actor Tasks: Pertinent AI Actor Tasks for each subcategory. Not every\
    \ AI Actor Task listed will \napply to every suggested action in the subcategory\
    \ (i.e., some apply to AI development and \nothers apply to AI deployment).  \n\
    The tables below begin with the AI RMF subcategory, shaded in blue, followed by\
    \ suggested actions."
- source_sentence: How can harmful bias and homogenization be addressed in the context
    of human-AI configuration?
  sentences:
  - "on GAI, apply general fairness metrics (e.g., demographic parity, equalized odds,\
    \ \nequal opportunity, statistical hypothesis tests), to the pipeline or business\
    \ \noutcome where appropriate; Custom, context-specific metrics developed in \n\
    collaboration with domain experts and affected communities; Measurements of \n\
    the prevalence of denigration in generated content in deployment (e.g., sub-\n\
    sampling a fraction of traffic and manually annotating denigrating content). \n\
    Harmful Bias and Homogenization;"
  - "MP-5.1-001 Apply TEVV practices for content provenance (e.g., probing a system's\
    \ synthetic \ndata generation capabilities for potential misuse or vulnerabilities.\
    \ \nInformation Integrity; Information \nSecurity \nMP-5.1-002 \nIdentify potential\
    \ content provenance harms of GAI, such as misinformation or \ndisinformation,\
    \ deepfakes, including NCII, or tampered content. Enumerate and \nrank risks based\
    \ on their likelihood and potential impact, and determine how well"
  - "MS-1.3-002 \nEngage in internal and external evaluations, GAI red-teaming, impact\
    \ \nassessments, or other structured human feedback exercises in consultation\
    \ \nwith representative AI Actors with expertise and familiarity in the context\
    \ of \nuse, and/or who are representative of the populations associated with the\
    \ \ncontext of use. \nHuman-AI Configuration; Harmful \nBias and Homogenization;\
    \ CBRN \nInformation or Capabilities \nMS-1.3-003"
- source_sentence: How can structured human feedback exercises, such as GAI red-teaming,
    contribute to GAI risk measurement and management?
  sentences:
  - "rank risks based on their likelihood and potential impact, and determine how\
    \ well \nprovenance solutions address specific risks and/or harms. \nInformation\
    \ Integrity; Dangerous, \nViolent, or Hateful Content; \nObscene, Degrading, and/or\
    \ \nAbusive Content \nMP-5.1-003 \nConsider disclosing use of GAI to end users\
    \ in relevant contexts, while considering \nthe objective of disclosure, the context\
    \ of use, the likelihood and magnitude of the"
  - "15 \nGV-1.3-004 Obtain input from stakeholder communities to identify unacceptable\
    \ use, in \naccordance with activities in the AI RMF Map function. \nCBRN Information\
    \ or Capabilities; \nObscene, Degrading, and/or \nAbusive Content; Harmful Bias\
    \ \nand Homogenization; Dangerous, \nViolent, or Hateful Content \nGV-1.3-005\
    \ \nMaintain an updated hierarchy of identified and expected GAI risks connected\
    \ to \ncontexts of GAI model advancement and use, potentially including specialized\
    \ risk"
  - "AI-generated content, for example by employing techniques like chaos \nengineering\
    \ and seeking stakeholder feedback. \nInformation Integrity \nMS-1.1-008 \nDefine\
    \ use cases, contexts of use, capabilities, and negative impacts where \nstructured\
    \ human feedback exercises, e.g., GAI red-teaming, would be most \nbeneficial for\
    \ GAI risk measurement and management based on the context of \nuse. \nHarmful\
    \ Bias and \nHomogenization; CBRN \nInformation or Capabilities \nMS-1.1-009"
model-index:
- name: SentenceTransformer based on Snowflake/snowflake-arctic-embed-m
  results:
  - task:
      type: information-retrieval
      name: Information Retrieval
    dataset:
      name: Unknown
      type: unknown
    metrics:
    - type: cosine_accuracy@1
      value: 0.85
      name: Cosine Accuracy@1
    - type: cosine_accuracy@3
      value: 0.96
      name: Cosine Accuracy@3
    - type: cosine_accuracy@5
      value: 0.98
      name: Cosine Accuracy@5
    - type: cosine_accuracy@10
      value: 1.0
      name: Cosine Accuracy@10
    - type: cosine_precision@1
      value: 0.85
      name: Cosine Precision@1
    - type: cosine_precision@3
      value: 0.31999999999999995
      name: Cosine Precision@3
    - type: cosine_precision@5
      value: 0.19599999999999995
      name: Cosine Precision@5
    - type: cosine_precision@10
      value: 0.09999999999999998
      name: Cosine Precision@10
    - type: cosine_recall@1
      value: 0.85
      name: Cosine Recall@1
    - type: cosine_recall@3
      value: 0.96
      name: Cosine Recall@3
    - type: cosine_recall@5
      value: 0.98
      name: Cosine Recall@5
    - type: cosine_recall@10
      value: 1.0
      name: Cosine Recall@10
    - type: cosine_ndcg@10
      value: 0.9342942871848772
      name: Cosine Ndcg@10
    - type: cosine_mrr@10
      value: 0.9124166666666668
      name: Cosine Mrr@10
    - type: cosine_map@100
      value: 0.9124166666666668
      name: Cosine Map@100
    - type: dot_accuracy@1
      value: 0.85
      name: Dot Accuracy@1
    - type: dot_accuracy@3
      value: 0.96
      name: Dot Accuracy@3
    - type: dot_accuracy@5
      value: 0.98
      name: Dot Accuracy@5
    - type: dot_accuracy@10
      value: 1.0
      name: Dot Accuracy@10
    - type: dot_precision@1
      value: 0.85
      name: Dot Precision@1
    - type: dot_precision@3
      value: 0.31999999999999995
      name: Dot Precision@3
    - type: dot_precision@5
      value: 0.19599999999999995
      name: Dot Precision@5
    - type: dot_precision@10
      value: 0.09999999999999998
      name: Dot Precision@10
    - type: dot_recall@1
      value: 0.85
      name: Dot Recall@1
    - type: dot_recall@3
      value: 0.96
      name: Dot Recall@3
    - type: dot_recall@5
      value: 0.98
      name: Dot Recall@5
    - type: dot_recall@10
      value: 1.0
      name: Dot Recall@10
    - type: dot_ndcg@10
      value: 0.9342942871848772
      name: Dot Ndcg@10
    - type: dot_mrr@10
      value: 0.9124166666666668
      name: Dot Mrr@10
    - type: dot_map@100
      value: 0.9124166666666668
      name: Dot Map@100
---

# SentenceTransformer based on Snowflake/snowflake-arctic-embed-m

This is a [sentence-transformers](https://www.SBERT.net) model finetuned from [Snowflake/snowflake-arctic-embed-m](https://huggingface.co/Snowflake/snowflake-arctic-embed-m). It maps sentences & paragraphs to a 768-dimensional dense vector space and can be used for semantic textual similarity, semantic search, paraphrase mining, text classification, clustering, and more.

## Model Details

### Model Description
- **Model Type:** Sentence Transformer
- **Base model:** [Snowflake/snowflake-arctic-embed-m](https://huggingface.co/Snowflake/snowflake-arctic-embed-m) <!-- at revision e2b128b9fa60c82b4585512b33e1544224ffff42 -->
- **Maximum Sequence Length:** 512 tokens
- **Output Dimensionality:** 768 tokens
- **Similarity Function:** Cosine Similarity
<!-- - **Training Dataset:** Unknown -->
<!-- - **Language:** Unknown -->
<!-- - **License:** Unknown -->

### Model Sources

- **Documentation:** [Sentence Transformers Documentation](https://sbert.net)
- **Repository:** [Sentence Transformers on GitHub](https://github.com/UKPLab/sentence-transformers)
- **Hugging Face:** [Sentence Transformers on Hugging Face](https://huggingface.co/models?library=sentence-transformers)

### Full Model Architecture

```
SentenceTransformer(
  (0): Transformer({'max_seq_length': 512, 'do_lower_case': False}) with Transformer model: BertModel 
  (1): Pooling({'word_embedding_dimension': 768, 'pooling_mode_cls_token': True, 'pooling_mode_mean_tokens': False, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False, 'include_prompt': True})
  (2): Normalize()
)
```

## Usage

### Direct Usage (Sentence Transformers)

First install the Sentence Transformers library:

```bash
pip install -U sentence-transformers
```

Then you can load this model and run inference.
```python
from sentence_transformers import SentenceTransformer

# Download from the 🤗 Hub
model = SentenceTransformer("Cheselle/finetuned-arctic-sentence")
# Run inference
sentences = [
    'How can structured human feedback exercises, such as GAI red-teaming, contribute to GAI risk measurement and management?',
    'AI-generated content, for example by employing techniques like chaos \nengineering and seeking stakeholder feedback. \nInformation Integrity \nMS-1.1-008 \nDefine use cases, contexts of use, capabilities, and negative impacts where \nstructured human feedback exercises, e.g., GAI red-teaming, would be most \nbeneficial for GAI risk measurement and management based on the context of \nuse. \nHarmful Bias and \nHomogenization; CBRN \nInformation or Capabilities \nMS-1.1-009',
    '15 \nGV-1.3-004 Obtain input from stakeholder communities to identify unacceptable use, in \naccordance with activities in the AI RMF Map function. \nCBRN Information or Capabilities; \nObscene, Degrading, and/or \nAbusive Content; Harmful Bias \nand Homogenization; Dangerous, \nViolent, or Hateful Content \nGV-1.3-005 \nMaintain an updated hierarchy of identified and expected GAI risks connected to \ncontexts of GAI model advancement and use, potentially including specialized risk',
]
embeddings = model.encode(sentences)
print(embeddings.shape)
# [3, 768]

# Get the similarity scores for the embeddings
similarities = model.similarity(embeddings, embeddings)
print(similarities.shape)
# [3, 3]
```

<!--
### Direct Usage (Transformers)

<details><summary>Click to see the direct usage in Transformers</summary>

</details>
-->

<!--
### Downstream Usage (Sentence Transformers)

You can finetune this model on your own dataset.

<details><summary>Click to expand</summary>

</details>
-->

<!--
### Out-of-Scope Use

*List how the model may foreseeably be misused and address what users ought not to do with the model.*
-->

## Evaluation

### Metrics

#### Information Retrieval

* Evaluated with [<code>InformationRetrievalEvaluator</code>](https://sbert.net/docs/package_reference/sentence_transformer/evaluation.html#sentence_transformers.evaluation.InformationRetrievalEvaluator)

| Metric              | Value      |
|:--------------------|:-----------|
| cosine_accuracy@1   | 0.85       |
| cosine_accuracy@3   | 0.96       |
| cosine_accuracy@5   | 0.98       |
| cosine_accuracy@10  | 1.0        |
| cosine_precision@1  | 0.85       |
| cosine_precision@3  | 0.32       |
| cosine_precision@5  | 0.196      |
| cosine_precision@10 | 0.1        |
| cosine_recall@1     | 0.85       |
| cosine_recall@3     | 0.96       |
| cosine_recall@5     | 0.98       |
| cosine_recall@10    | 1.0        |
| cosine_ndcg@10      | 0.9343     |
| cosine_mrr@10       | 0.9124     |
| **cosine_map@100**  | **0.9124** |
| dot_accuracy@1      | 0.85       |
| dot_accuracy@3      | 0.96       |
| dot_accuracy@5      | 0.98       |
| dot_accuracy@10     | 1.0        |
| dot_precision@1     | 0.85       |
| dot_precision@3     | 0.32       |
| dot_precision@5     | 0.196      |
| dot_precision@10    | 0.1        |
| dot_recall@1        | 0.85       |
| dot_recall@3        | 0.96       |
| dot_recall@5        | 0.98       |
| dot_recall@10       | 1.0        |
| dot_ndcg@10         | 0.9343     |
| dot_mrr@10          | 0.9124     |
| dot_map@100         | 0.9124     |

<!--
## Bias, Risks and Limitations

*What are the known or foreseeable issues stemming from this model? You could also flag here known failure cases or weaknesses of the model.*
-->

<!--
### Recommendations

*What are recommendations with respect to the foreseeable issues? For example, filtering explicit content.*
-->

## Training Details

### Training Dataset

#### Unnamed Dataset


* Size: 600 training samples
* Columns: <code>sentence_0</code> and <code>sentence_1</code>
* Approximate statistics based on the first 600 samples:
  |         | sentence_0                                                                         | sentence_1                                                                          |
  |:--------|:-----------------------------------------------------------------------------------|:------------------------------------------------------------------------------------|
  | type    | string                                                                             | string                                                                              |
  | details | <ul><li>min: 11 tokens</li><li>mean: 21.05 tokens</li><li>max: 34 tokens</li></ul> | <ul><li>min: 14 tokens</li><li>mean: 91.74 tokens</li><li>max: 335 tokens</li></ul> |
* Samples:
  | sentence_0                                                                                                    | sentence_1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
  |:--------------------------------------------------------------------------------------------------------------|:-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
  | <code>What is the title of the publication related to Artificial Intelligence Risk Management by NIST?</code> | <code>NIST Trustworthy and Responsible AI  <br>NIST AI 600-1 <br>Artificial Intelligence Risk Management <br>Framework: Generative Artificial <br>Intelligence Profile <br> <br> <br> <br>This publication is available free of charge from: <br>https://doi.org/10.6028/NIST.AI.600-1</code>                                                                                                                                                                                                                                                                |
  | <code>Where can the NIST AI 600-1 publication be accessed for free?</code>                                    | <code>NIST Trustworthy and Responsible AI  <br>NIST AI 600-1 <br>Artificial Intelligence Risk Management <br>Framework: Generative Artificial <br>Intelligence Profile <br> <br> <br> <br>This publication is available free of charge from: <br>https://doi.org/10.6028/NIST.AI.600-1</code>                                                                                                                                                                                                                                                                |
  | <code>What is the title of the publication released by NIST in July 2024 regarding AI risk management?</code> | <code>NIST Trustworthy and Responsible AI  <br>NIST AI 600-1 <br>Artificial Intelligence Risk Management <br>Framework: Generative Artificial <br>Intelligence Profile <br> <br> <br> <br>This publication is available free of charge from: <br>https://doi.org/10.6028/NIST.AI.600-1 <br> <br>July 2024 <br> <br> <br> <br> <br>U.S. Department of Commerce  <br>Gina M. Raimondo, Secretary <br>National Institute of Standards and Technology  <br>Laurie E. Locascio, NIST Director and Under Secretary of Commerce for Standards and Technology</code> |
* Loss: [<code>MatryoshkaLoss</code>](https://sbert.net/docs/package_reference/sentence_transformer/losses.html#matryoshkaloss) with these parameters:
  ```json
  {
      "loss": "MultipleNegativesRankingLoss",
      "matryoshka_dims": [
          768,
          512,
          256,
          128,
          64
      ],
      "matryoshka_weights": [
          1,
          1,
          1,
          1,
          1
      ],
      "n_dims_per_step": -1
  }
  ```

### Training Hyperparameters
#### Non-Default Hyperparameters

- `eval_strategy`: steps
- `per_device_train_batch_size`: 16
- `per_device_eval_batch_size`: 16
- `multi_dataset_batch_sampler`: round_robin

#### All Hyperparameters
<details><summary>Click to expand</summary>

- `overwrite_output_dir`: False
- `do_predict`: False
- `eval_strategy`: steps
- `prediction_loss_only`: True
- `per_device_train_batch_size`: 16
- `per_device_eval_batch_size`: 16
- `per_gpu_train_batch_size`: None
- `per_gpu_eval_batch_size`: None
- `gradient_accumulation_steps`: 1
- `eval_accumulation_steps`: None
- `torch_empty_cache_steps`: None
- `learning_rate`: 5e-05
- `weight_decay`: 0.0
- `adam_beta1`: 0.9
- `adam_beta2`: 0.999
- `adam_epsilon`: 1e-08
- `max_grad_norm`: 1
- `num_train_epochs`: 3
- `max_steps`: -1
- `lr_scheduler_type`: linear
- `lr_scheduler_kwargs`: {}
- `warmup_ratio`: 0.0
- `warmup_steps`: 0
- `log_level`: passive
- `log_level_replica`: warning
- `log_on_each_node`: True
- `logging_nan_inf_filter`: True
- `save_safetensors`: True
- `save_on_each_node`: False
- `save_only_model`: False
- `restore_callback_states_from_checkpoint`: False
- `no_cuda`: False
- `use_cpu`: False
- `use_mps_device`: False
- `seed`: 42
- `data_seed`: None
- `jit_mode_eval`: False
- `use_ipex`: False
- `bf16`: False
- `fp16`: False
- `fp16_opt_level`: O1
- `half_precision_backend`: auto
- `bf16_full_eval`: False
- `fp16_full_eval`: False
- `tf32`: None
- `local_rank`: 0
- `ddp_backend`: None
- `tpu_num_cores`: None
- `tpu_metrics_debug`: False
- `debug`: []
- `dataloader_drop_last`: False
- `dataloader_num_workers`: 0
- `dataloader_prefetch_factor`: None
- `past_index`: -1
- `disable_tqdm`: False
- `remove_unused_columns`: True
- `label_names`: None
- `load_best_model_at_end`: False
- `ignore_data_skip`: False
- `fsdp`: []
- `fsdp_min_num_params`: 0
- `fsdp_config`: {'min_num_params': 0, 'xla': False, 'xla_fsdp_v2': False, 'xla_fsdp_grad_ckpt': False}
- `fsdp_transformer_layer_cls_to_wrap`: None
- `accelerator_config`: {'split_batches': False, 'dispatch_batches': None, 'even_batches': True, 'use_seedable_sampler': True, 'non_blocking': False, 'gradient_accumulation_kwargs': None}
- `deepspeed`: None
- `label_smoothing_factor`: 0.0
- `optim`: adamw_torch
- `optim_args`: None
- `adafactor`: False
- `group_by_length`: False
- `length_column_name`: length
- `ddp_find_unused_parameters`: None
- `ddp_bucket_cap_mb`: None
- `ddp_broadcast_buffers`: False
- `dataloader_pin_memory`: True
- `dataloader_persistent_workers`: False
- `skip_memory_metrics`: True
- `use_legacy_prediction_loop`: False
- `push_to_hub`: False
- `resume_from_checkpoint`: None
- `hub_model_id`: None
- `hub_strategy`: every_save
- `hub_private_repo`: False
- `hub_always_push`: False
- `gradient_checkpointing`: False
- `gradient_checkpointing_kwargs`: None
- `include_inputs_for_metrics`: False
- `eval_do_concat_batches`: True
- `fp16_backend`: auto
- `push_to_hub_model_id`: None
- `push_to_hub_organization`: None
- `mp_parameters`: 
- `auto_find_batch_size`: False
- `full_determinism`: False
- `torchdynamo`: None
- `ray_scope`: last
- `ddp_timeout`: 1800
- `torch_compile`: False
- `torch_compile_backend`: None
- `torch_compile_mode`: None
- `dispatch_batches`: None
- `split_batches`: None
- `include_tokens_per_second`: False
- `include_num_input_tokens_seen`: False
- `neftune_noise_alpha`: None
- `optim_target_modules`: None
- `batch_eval_metrics`: False
- `eval_on_start`: False
- `eval_use_gather_object`: False
- `batch_sampler`: batch_sampler
- `multi_dataset_batch_sampler`: round_robin

</details>

### Training Logs
| Epoch  | Step | cosine_map@100 |
|:------:|:----:|:--------------:|
| 1.0    | 38   | 0.9033         |
| 1.3158 | 50   | 0.9067         |
| 2.0    | 76   | 0.9124         |


### Framework Versions
- Python: 3.10.12
- Sentence Transformers: 3.1.1
- Transformers: 4.44.2
- PyTorch: 2.4.1+cu121
- Accelerate: 0.34.2
- Datasets: 3.0.0
- Tokenizers: 0.19.1

## Citation

### BibTeX

#### Sentence Transformers
```bibtex
@inproceedings{reimers-2019-sentence-bert,
    title = "Sentence-BERT: Sentence Embeddings using Siamese BERT-Networks",
    author = "Reimers, Nils and Gurevych, Iryna",
    booktitle = "Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing",
    month = "11",
    year = "2019",
    publisher = "Association for Computational Linguistics",
    url = "https://arxiv.org/abs/1908.10084",
}
```

#### MatryoshkaLoss
```bibtex
@misc{kusupati2024matryoshka,
    title={Matryoshka Representation Learning},
    author={Aditya Kusupati and Gantavya Bhatt and Aniket Rege and Matthew Wallingford and Aditya Sinha and Vivek Ramanujan and William Howard-Snyder and Kaifeng Chen and Sham Kakade and Prateek Jain and Ali Farhadi},
    year={2024},
    eprint={2205.13147},
    archivePrefix={arXiv},
    primaryClass={cs.LG}
}
```

#### MultipleNegativesRankingLoss
```bibtex
@misc{henderson2017efficient,
    title={Efficient Natural Language Response Suggestion for Smart Reply},
    author={Matthew Henderson and Rami Al-Rfou and Brian Strope and Yun-hsuan Sung and Laszlo Lukacs and Ruiqi Guo and Sanjiv Kumar and Balint Miklos and Ray Kurzweil},
    year={2017},
    eprint={1705.00652},
    archivePrefix={arXiv},
    primaryClass={cs.CL}
}
```

<!--
## Glossary

*Clearly define terms in order to be accessible across audiences.*
-->

<!--
## Model Card Authors

*Lists the people who create the model card, providing recognition and accountability for the detailed work that goes into its construction.*
-->

<!--
## Model Card Contact

*Provides a way for people who have updates to the Model Card, suggestions, or questions, to contact the Model Card authors.*
-->