File size: 28,141 Bytes
baa7639 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 |
---
base_model: Snowflake/snowflake-arctic-embed-m
library_name: sentence-transformers
metrics:
- cosine_accuracy@1
- cosine_accuracy@3
- cosine_accuracy@5
- cosine_accuracy@10
- cosine_precision@1
- cosine_precision@3
- cosine_precision@5
- cosine_precision@10
- cosine_recall@1
- cosine_recall@3
- cosine_recall@5
- cosine_recall@10
- cosine_ndcg@10
- cosine_mrr@10
- cosine_map@100
- dot_accuracy@1
- dot_accuracy@3
- dot_accuracy@5
- dot_accuracy@10
- dot_precision@1
- dot_precision@3
- dot_precision@5
- dot_precision@10
- dot_recall@1
- dot_recall@3
- dot_recall@5
- dot_recall@10
- dot_ndcg@10
- dot_mrr@10
- dot_map@100
pipeline_tag: sentence-similarity
tags:
- sentence-transformers
- sentence-similarity
- feature-extraction
- generated_from_trainer
- dataset_size:600
- loss:MatryoshkaLoss
- loss:MultipleNegativesRankingLoss
widget:
- source_sentence: How can organizations tailor their measurement of GAI risks based
on specific characteristics?
sentences:
- "3 \nthe abuse, misuse, and unsafe repurposing by humans (adversarial or not),\
\ and others result \nfrom interactions between a human and an AI system. \n\
• \nTime scale: GAI risks may materialize abruptly or across extended periods.\
\ Examples include \nimmediate (and/or prolonged) emotional harm and potential\
\ risks to physical safety due to the \ndistribution of harmful deepfake images,\
\ or the long-term effect of disinformation on societal \ntrust in public institutions."
- "12 \nCSAM. Even when trained on “clean” data, increasingly capable GAI models\
\ can synthesize or produce \nsynthetic NCII and CSAM. Websites, mobile apps,\
\ and custom-built models that generate synthetic NCII \nhave moved from niche\
\ internet forums to mainstream, automated, and scaled online businesses. \n\
Trustworthy AI Characteristics: Fair with Harmful Bias Managed, Safe, Privacy\
\ Enhanced \n2.12. \nValue Chain and Component Integration"
- "case context. \nOrganizations may choose to tailor how they measure GAI risks\
\ based on these characteristics. They may \nadditionally wish to allocate risk\
\ management resources relative to the severity and likelihood of \nnegative impacts,\
\ including where and how these risks manifest, and their direct and material\
\ impacts \nharms in the context of GAI use. Mitigations for model or system level\
\ risks may differ from mitigations \nfor use-case or ecosystem level risks."
- source_sentence: What methods are suggested for measuring the reliability of content
authentication techniques in the context of content provenance?
sentences:
- "updates. \nInformation Integrity; Data Privacy \nMG-3.2-003 \nDocument sources\
\ and types of training data and their origins, potential biases \npresent in\
\ the data related to the GAI application and its content provenance, \narchitecture,\
\ training process of the pre-trained model including information on \nhyperparameters,\
\ training duration, and any fine-tuning or retrieval-augmented \ngeneration processes\
\ applied. \nInformation Integrity; Harmful Bias \nand Homogenization; Intellectual\
\ \nProperty"
- "Security \nMS-2.7-005 \nMeasure reliability of content authentication methods,\
\ such as watermarking, \ncryptographic signatures, digital fingerprints, as well\
\ as access controls, \nconformity assessment, and model integrity verification,\
\ which can help support \nthe effective implementation of content provenance techniques.\
\ Evaluate the \nrate of false positives and false negatives in content provenance,\
\ as well as true \npositives and true negatives for verification. \nInformation\
\ Integrity \nMS-2.7-006"
- "GV-1.6-003 \nIn addition to general model, governance, and risk information,\
\ consider the \nfollowing items in GAI system inventory entries: Data provenance\
\ information \n(e.g., source, signatures, versioning, watermarks); Known issues\
\ reported from \ninternal bug tracking or external information sharing resources\
\ (e.g., AI incident \ndatabase, AVID, CVE, NVD, or OECD AI incident monitor);\
\ Human oversight roles \nand responsibilities; Special rights and considerations\
\ for intellectual property,"
- source_sentence: What are the suggested actions an organization can take to manage
GAI risks?
sentences:
- "Information Integrity; Dangerous, \nViolent, or Hateful Content; CBRN \nInformation\
\ or Capabilities \nGV-1.3-007 Devise a plan to halt development or deployment\
\ of a GAI system that poses \nunacceptable negative risk. \nCBRN Information\
\ and Capability; \nInformation Security; Information \nIntegrity \nAI Actor Tasks:\
\ Governance and Oversight \n \nGOVERN 1.4: The risk management process and its\
\ outcomes are established through transparent policies, procedures, and other"
- "match the statistical properties of real-world data without disclosing personally\
\ \nidentifiable information or contributing to homogenization. \nData Privacy;\
\ Intellectual Property; \nInformation Integrity; \nConfabulation; Harmful Bias\
\ and \nHomogenization \nAI Actor Tasks: AI Deployment, AI Impact Assessment,\
\ Governance and Oversight, Operation and Monitoring \n \nMANAGE 2.3: Procedures\
\ are followed to respond to and recover from a previously unknown risk when it\
\ is identified. \nAction ID"
- "• \nSuggested Action: Steps an organization or AI actor can take to manage GAI\
\ risks. \n• \nGAI Risks: Tags linking suggested actions with relevant GAI risks.\
\ \n• \nAI Actor Tasks: Pertinent AI Actor Tasks for each subcategory. Not every\
\ AI Actor Task listed will \napply to every suggested action in the subcategory\
\ (i.e., some apply to AI development and \nothers apply to AI deployment). \n\
The tables below begin with the AI RMF subcategory, shaded in blue, followed by\
\ suggested actions."
- source_sentence: How can harmful bias and homogenization be addressed in the context
of human-AI configuration?
sentences:
- "on GAI, apply general fairness metrics (e.g., demographic parity, equalized odds,\
\ \nequal opportunity, statistical hypothesis tests), to the pipeline or business\
\ \noutcome where appropriate; Custom, context-specific metrics developed in \n\
collaboration with domain experts and affected communities; Measurements of \n\
the prevalence of denigration in generated content in deployment (e.g., sub-\n\
sampling a fraction of traffic and manually annotating denigrating content). \n\
Harmful Bias and Homogenization;"
- "MP-5.1-001 Apply TEVV practices for content provenance (e.g., probing a system's\
\ synthetic \ndata generation capabilities for potential misuse or vulnerabilities.\
\ \nInformation Integrity; Information \nSecurity \nMP-5.1-002 \nIdentify potential\
\ content provenance harms of GAI, such as misinformation or \ndisinformation,\
\ deepfakes, including NCII, or tampered content. Enumerate and \nrank risks based\
\ on their likelihood and potential impact, and determine how well"
- "MS-1.3-002 \nEngage in internal and external evaluations, GAI red-teaming, impact\
\ \nassessments, or other structured human feedback exercises in consultation\
\ \nwith representative AI Actors with expertise and familiarity in the context\
\ of \nuse, and/or who are representative of the populations associated with the\
\ \ncontext of use. \nHuman-AI Configuration; Harmful \nBias and Homogenization;\
\ CBRN \nInformation or Capabilities \nMS-1.3-003"
- source_sentence: How can structured human feedback exercises, such as GAI red-teaming,
contribute to GAI risk measurement and management?
sentences:
- "rank risks based on their likelihood and potential impact, and determine how\
\ well \nprovenance solutions address specific risks and/or harms. \nInformation\
\ Integrity; Dangerous, \nViolent, or Hateful Content; \nObscene, Degrading, and/or\
\ \nAbusive Content \nMP-5.1-003 \nConsider disclosing use of GAI to end users\
\ in relevant contexts, while considering \nthe objective of disclosure, the context\
\ of use, the likelihood and magnitude of the"
- "15 \nGV-1.3-004 Obtain input from stakeholder communities to identify unacceptable\
\ use, in \naccordance with activities in the AI RMF Map function. \nCBRN Information\
\ or Capabilities; \nObscene, Degrading, and/or \nAbusive Content; Harmful Bias\
\ \nand Homogenization; Dangerous, \nViolent, or Hateful Content \nGV-1.3-005\
\ \nMaintain an updated hierarchy of identified and expected GAI risks connected\
\ to \ncontexts of GAI model advancement and use, potentially including specialized\
\ risk"
- "AI-generated content, for example by employing techniques like chaos \nengineering\
\ and seeking stakeholder feedback. \nInformation Integrity \nMS-1.1-008 \nDefine\
\ use cases, contexts of use, capabilities, and negative impacts where \nstructured\
\ human feedback exercises, e.g., GAI red-teaming, would be most \nbeneficial for\
\ GAI risk measurement and management based on the context of \nuse. \nHarmful\
\ Bias and \nHomogenization; CBRN \nInformation or Capabilities \nMS-1.1-009"
model-index:
- name: SentenceTransformer based on Snowflake/snowflake-arctic-embed-m
results:
- task:
type: information-retrieval
name: Information Retrieval
dataset:
name: Unknown
type: unknown
metrics:
- type: cosine_accuracy@1
value: 0.85
name: Cosine Accuracy@1
- type: cosine_accuracy@3
value: 0.96
name: Cosine Accuracy@3
- type: cosine_accuracy@5
value: 0.98
name: Cosine Accuracy@5
- type: cosine_accuracy@10
value: 1.0
name: Cosine Accuracy@10
- type: cosine_precision@1
value: 0.85
name: Cosine Precision@1
- type: cosine_precision@3
value: 0.31999999999999995
name: Cosine Precision@3
- type: cosine_precision@5
value: 0.19599999999999995
name: Cosine Precision@5
- type: cosine_precision@10
value: 0.09999999999999998
name: Cosine Precision@10
- type: cosine_recall@1
value: 0.85
name: Cosine Recall@1
- type: cosine_recall@3
value: 0.96
name: Cosine Recall@3
- type: cosine_recall@5
value: 0.98
name: Cosine Recall@5
- type: cosine_recall@10
value: 1.0
name: Cosine Recall@10
- type: cosine_ndcg@10
value: 0.9342942871848772
name: Cosine Ndcg@10
- type: cosine_mrr@10
value: 0.9124166666666668
name: Cosine Mrr@10
- type: cosine_map@100
value: 0.9124166666666668
name: Cosine Map@100
- type: dot_accuracy@1
value: 0.85
name: Dot Accuracy@1
- type: dot_accuracy@3
value: 0.96
name: Dot Accuracy@3
- type: dot_accuracy@5
value: 0.98
name: Dot Accuracy@5
- type: dot_accuracy@10
value: 1.0
name: Dot Accuracy@10
- type: dot_precision@1
value: 0.85
name: Dot Precision@1
- type: dot_precision@3
value: 0.31999999999999995
name: Dot Precision@3
- type: dot_precision@5
value: 0.19599999999999995
name: Dot Precision@5
- type: dot_precision@10
value: 0.09999999999999998
name: Dot Precision@10
- type: dot_recall@1
value: 0.85
name: Dot Recall@1
- type: dot_recall@3
value: 0.96
name: Dot Recall@3
- type: dot_recall@5
value: 0.98
name: Dot Recall@5
- type: dot_recall@10
value: 1.0
name: Dot Recall@10
- type: dot_ndcg@10
value: 0.9342942871848772
name: Dot Ndcg@10
- type: dot_mrr@10
value: 0.9124166666666668
name: Dot Mrr@10
- type: dot_map@100
value: 0.9124166666666668
name: Dot Map@100
---
# SentenceTransformer based on Snowflake/snowflake-arctic-embed-m
This is a [sentence-transformers](https://www.SBERT.net) model finetuned from [Snowflake/snowflake-arctic-embed-m](https://huggingface.co/Snowflake/snowflake-arctic-embed-m). It maps sentences & paragraphs to a 768-dimensional dense vector space and can be used for semantic textual similarity, semantic search, paraphrase mining, text classification, clustering, and more.
## Model Details
### Model Description
- **Model Type:** Sentence Transformer
- **Base model:** [Snowflake/snowflake-arctic-embed-m](https://huggingface.co/Snowflake/snowflake-arctic-embed-m) <!-- at revision e2b128b9fa60c82b4585512b33e1544224ffff42 -->
- **Maximum Sequence Length:** 512 tokens
- **Output Dimensionality:** 768 tokens
- **Similarity Function:** Cosine Similarity
<!-- - **Training Dataset:** Unknown -->
<!-- - **Language:** Unknown -->
<!-- - **License:** Unknown -->
### Model Sources
- **Documentation:** [Sentence Transformers Documentation](https://sbert.net)
- **Repository:** [Sentence Transformers on GitHub](https://github.com/UKPLab/sentence-transformers)
- **Hugging Face:** [Sentence Transformers on Hugging Face](https://huggingface.co/models?library=sentence-transformers)
### Full Model Architecture
```
SentenceTransformer(
(0): Transformer({'max_seq_length': 512, 'do_lower_case': False}) with Transformer model: BertModel
(1): Pooling({'word_embedding_dimension': 768, 'pooling_mode_cls_token': True, 'pooling_mode_mean_tokens': False, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False, 'include_prompt': True})
(2): Normalize()
)
```
## Usage
### Direct Usage (Sentence Transformers)
First install the Sentence Transformers library:
```bash
pip install -U sentence-transformers
```
Then you can load this model and run inference.
```python
from sentence_transformers import SentenceTransformer
# Download from the 🤗 Hub
model = SentenceTransformer("Cheselle/finetuned-arctic-sentence")
# Run inference
sentences = [
'How can structured human feedback exercises, such as GAI red-teaming, contribute to GAI risk measurement and management?',
'AI-generated content, for example by employing techniques like chaos \nengineering and seeking stakeholder feedback. \nInformation Integrity \nMS-1.1-008 \nDefine use cases, contexts of use, capabilities, and negative impacts where \nstructured human feedback exercises, e.g., GAI red-teaming, would be most \nbeneficial for GAI risk measurement and management based on the context of \nuse. \nHarmful Bias and \nHomogenization; CBRN \nInformation or Capabilities \nMS-1.1-009',
'15 \nGV-1.3-004 Obtain input from stakeholder communities to identify unacceptable use, in \naccordance with activities in the AI RMF Map function. \nCBRN Information or Capabilities; \nObscene, Degrading, and/or \nAbusive Content; Harmful Bias \nand Homogenization; Dangerous, \nViolent, or Hateful Content \nGV-1.3-005 \nMaintain an updated hierarchy of identified and expected GAI risks connected to \ncontexts of GAI model advancement and use, potentially including specialized risk',
]
embeddings = model.encode(sentences)
print(embeddings.shape)
# [3, 768]
# Get the similarity scores for the embeddings
similarities = model.similarity(embeddings, embeddings)
print(similarities.shape)
# [3, 3]
```
<!--
### Direct Usage (Transformers)
<details><summary>Click to see the direct usage in Transformers</summary>
</details>
-->
<!--
### Downstream Usage (Sentence Transformers)
You can finetune this model on your own dataset.
<details><summary>Click to expand</summary>
</details>
-->
<!--
### Out-of-Scope Use
*List how the model may foreseeably be misused and address what users ought not to do with the model.*
-->
## Evaluation
### Metrics
#### Information Retrieval
* Evaluated with [<code>InformationRetrievalEvaluator</code>](https://sbert.net/docs/package_reference/sentence_transformer/evaluation.html#sentence_transformers.evaluation.InformationRetrievalEvaluator)
| Metric | Value |
|:--------------------|:-----------|
| cosine_accuracy@1 | 0.85 |
| cosine_accuracy@3 | 0.96 |
| cosine_accuracy@5 | 0.98 |
| cosine_accuracy@10 | 1.0 |
| cosine_precision@1 | 0.85 |
| cosine_precision@3 | 0.32 |
| cosine_precision@5 | 0.196 |
| cosine_precision@10 | 0.1 |
| cosine_recall@1 | 0.85 |
| cosine_recall@3 | 0.96 |
| cosine_recall@5 | 0.98 |
| cosine_recall@10 | 1.0 |
| cosine_ndcg@10 | 0.9343 |
| cosine_mrr@10 | 0.9124 |
| **cosine_map@100** | **0.9124** |
| dot_accuracy@1 | 0.85 |
| dot_accuracy@3 | 0.96 |
| dot_accuracy@5 | 0.98 |
| dot_accuracy@10 | 1.0 |
| dot_precision@1 | 0.85 |
| dot_precision@3 | 0.32 |
| dot_precision@5 | 0.196 |
| dot_precision@10 | 0.1 |
| dot_recall@1 | 0.85 |
| dot_recall@3 | 0.96 |
| dot_recall@5 | 0.98 |
| dot_recall@10 | 1.0 |
| dot_ndcg@10 | 0.9343 |
| dot_mrr@10 | 0.9124 |
| dot_map@100 | 0.9124 |
<!--
## Bias, Risks and Limitations
*What are the known or foreseeable issues stemming from this model? You could also flag here known failure cases or weaknesses of the model.*
-->
<!--
### Recommendations
*What are recommendations with respect to the foreseeable issues? For example, filtering explicit content.*
-->
## Training Details
### Training Dataset
#### Unnamed Dataset
* Size: 600 training samples
* Columns: <code>sentence_0</code> and <code>sentence_1</code>
* Approximate statistics based on the first 600 samples:
| | sentence_0 | sentence_1 |
|:--------|:-----------------------------------------------------------------------------------|:------------------------------------------------------------------------------------|
| type | string | string |
| details | <ul><li>min: 11 tokens</li><li>mean: 21.05 tokens</li><li>max: 34 tokens</li></ul> | <ul><li>min: 14 tokens</li><li>mean: 91.74 tokens</li><li>max: 335 tokens</li></ul> |
* Samples:
| sentence_0 | sentence_1 |
|:--------------------------------------------------------------------------------------------------------------|:-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| <code>What is the title of the publication related to Artificial Intelligence Risk Management by NIST?</code> | <code>NIST Trustworthy and Responsible AI <br>NIST AI 600-1 <br>Artificial Intelligence Risk Management <br>Framework: Generative Artificial <br>Intelligence Profile <br> <br> <br> <br>This publication is available free of charge from: <br>https://doi.org/10.6028/NIST.AI.600-1</code> |
| <code>Where can the NIST AI 600-1 publication be accessed for free?</code> | <code>NIST Trustworthy and Responsible AI <br>NIST AI 600-1 <br>Artificial Intelligence Risk Management <br>Framework: Generative Artificial <br>Intelligence Profile <br> <br> <br> <br>This publication is available free of charge from: <br>https://doi.org/10.6028/NIST.AI.600-1</code> |
| <code>What is the title of the publication released by NIST in July 2024 regarding AI risk management?</code> | <code>NIST Trustworthy and Responsible AI <br>NIST AI 600-1 <br>Artificial Intelligence Risk Management <br>Framework: Generative Artificial <br>Intelligence Profile <br> <br> <br> <br>This publication is available free of charge from: <br>https://doi.org/10.6028/NIST.AI.600-1 <br> <br>July 2024 <br> <br> <br> <br> <br>U.S. Department of Commerce <br>Gina M. Raimondo, Secretary <br>National Institute of Standards and Technology <br>Laurie E. Locascio, NIST Director and Under Secretary of Commerce for Standards and Technology</code> |
* Loss: [<code>MatryoshkaLoss</code>](https://sbert.net/docs/package_reference/sentence_transformer/losses.html#matryoshkaloss) with these parameters:
```json
{
"loss": "MultipleNegativesRankingLoss",
"matryoshka_dims": [
768,
512,
256,
128,
64
],
"matryoshka_weights": [
1,
1,
1,
1,
1
],
"n_dims_per_step": -1
}
```
### Training Hyperparameters
#### Non-Default Hyperparameters
- `eval_strategy`: steps
- `per_device_train_batch_size`: 16
- `per_device_eval_batch_size`: 16
- `multi_dataset_batch_sampler`: round_robin
#### All Hyperparameters
<details><summary>Click to expand</summary>
- `overwrite_output_dir`: False
- `do_predict`: False
- `eval_strategy`: steps
- `prediction_loss_only`: True
- `per_device_train_batch_size`: 16
- `per_device_eval_batch_size`: 16
- `per_gpu_train_batch_size`: None
- `per_gpu_eval_batch_size`: None
- `gradient_accumulation_steps`: 1
- `eval_accumulation_steps`: None
- `torch_empty_cache_steps`: None
- `learning_rate`: 5e-05
- `weight_decay`: 0.0
- `adam_beta1`: 0.9
- `adam_beta2`: 0.999
- `adam_epsilon`: 1e-08
- `max_grad_norm`: 1
- `num_train_epochs`: 3
- `max_steps`: -1
- `lr_scheduler_type`: linear
- `lr_scheduler_kwargs`: {}
- `warmup_ratio`: 0.0
- `warmup_steps`: 0
- `log_level`: passive
- `log_level_replica`: warning
- `log_on_each_node`: True
- `logging_nan_inf_filter`: True
- `save_safetensors`: True
- `save_on_each_node`: False
- `save_only_model`: False
- `restore_callback_states_from_checkpoint`: False
- `no_cuda`: False
- `use_cpu`: False
- `use_mps_device`: False
- `seed`: 42
- `data_seed`: None
- `jit_mode_eval`: False
- `use_ipex`: False
- `bf16`: False
- `fp16`: False
- `fp16_opt_level`: O1
- `half_precision_backend`: auto
- `bf16_full_eval`: False
- `fp16_full_eval`: False
- `tf32`: None
- `local_rank`: 0
- `ddp_backend`: None
- `tpu_num_cores`: None
- `tpu_metrics_debug`: False
- `debug`: []
- `dataloader_drop_last`: False
- `dataloader_num_workers`: 0
- `dataloader_prefetch_factor`: None
- `past_index`: -1
- `disable_tqdm`: False
- `remove_unused_columns`: True
- `label_names`: None
- `load_best_model_at_end`: False
- `ignore_data_skip`: False
- `fsdp`: []
- `fsdp_min_num_params`: 0
- `fsdp_config`: {'min_num_params': 0, 'xla': False, 'xla_fsdp_v2': False, 'xla_fsdp_grad_ckpt': False}
- `fsdp_transformer_layer_cls_to_wrap`: None
- `accelerator_config`: {'split_batches': False, 'dispatch_batches': None, 'even_batches': True, 'use_seedable_sampler': True, 'non_blocking': False, 'gradient_accumulation_kwargs': None}
- `deepspeed`: None
- `label_smoothing_factor`: 0.0
- `optim`: adamw_torch
- `optim_args`: None
- `adafactor`: False
- `group_by_length`: False
- `length_column_name`: length
- `ddp_find_unused_parameters`: None
- `ddp_bucket_cap_mb`: None
- `ddp_broadcast_buffers`: False
- `dataloader_pin_memory`: True
- `dataloader_persistent_workers`: False
- `skip_memory_metrics`: True
- `use_legacy_prediction_loop`: False
- `push_to_hub`: False
- `resume_from_checkpoint`: None
- `hub_model_id`: None
- `hub_strategy`: every_save
- `hub_private_repo`: False
- `hub_always_push`: False
- `gradient_checkpointing`: False
- `gradient_checkpointing_kwargs`: None
- `include_inputs_for_metrics`: False
- `eval_do_concat_batches`: True
- `fp16_backend`: auto
- `push_to_hub_model_id`: None
- `push_to_hub_organization`: None
- `mp_parameters`:
- `auto_find_batch_size`: False
- `full_determinism`: False
- `torchdynamo`: None
- `ray_scope`: last
- `ddp_timeout`: 1800
- `torch_compile`: False
- `torch_compile_backend`: None
- `torch_compile_mode`: None
- `dispatch_batches`: None
- `split_batches`: None
- `include_tokens_per_second`: False
- `include_num_input_tokens_seen`: False
- `neftune_noise_alpha`: None
- `optim_target_modules`: None
- `batch_eval_metrics`: False
- `eval_on_start`: False
- `eval_use_gather_object`: False
- `batch_sampler`: batch_sampler
- `multi_dataset_batch_sampler`: round_robin
</details>
### Training Logs
| Epoch | Step | cosine_map@100 |
|:------:|:----:|:--------------:|
| 1.0 | 38 | 0.9033 |
| 1.3158 | 50 | 0.9067 |
| 2.0 | 76 | 0.9124 |
### Framework Versions
- Python: 3.10.12
- Sentence Transformers: 3.1.1
- Transformers: 4.44.2
- PyTorch: 2.4.1+cu121
- Accelerate: 0.34.2
- Datasets: 3.0.0
- Tokenizers: 0.19.1
## Citation
### BibTeX
#### Sentence Transformers
```bibtex
@inproceedings{reimers-2019-sentence-bert,
title = "Sentence-BERT: Sentence Embeddings using Siamese BERT-Networks",
author = "Reimers, Nils and Gurevych, Iryna",
booktitle = "Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing",
month = "11",
year = "2019",
publisher = "Association for Computational Linguistics",
url = "https://arxiv.org/abs/1908.10084",
}
```
#### MatryoshkaLoss
```bibtex
@misc{kusupati2024matryoshka,
title={Matryoshka Representation Learning},
author={Aditya Kusupati and Gantavya Bhatt and Aniket Rege and Matthew Wallingford and Aditya Sinha and Vivek Ramanujan and William Howard-Snyder and Kaifeng Chen and Sham Kakade and Prateek Jain and Ali Farhadi},
year={2024},
eprint={2205.13147},
archivePrefix={arXiv},
primaryClass={cs.LG}
}
```
#### MultipleNegativesRankingLoss
```bibtex
@misc{henderson2017efficient,
title={Efficient Natural Language Response Suggestion for Smart Reply},
author={Matthew Henderson and Rami Al-Rfou and Brian Strope and Yun-hsuan Sung and Laszlo Lukacs and Ruiqi Guo and Sanjiv Kumar and Balint Miklos and Ray Kurzweil},
year={2017},
eprint={1705.00652},
archivePrefix={arXiv},
primaryClass={cs.CL}
}
```
<!--
## Glossary
*Clearly define terms in order to be accessible across audiences.*
-->
<!--
## Model Card Authors
*Lists the people who create the model card, providing recognition and accountability for the detailed work that goes into its construction.*
-->
<!--
## Model Card Contact
*Provides a way for people who have updates to the Model Card, suggestions, or questions, to contact the Model Card authors.*
--> |