Whisper Medium Portuguese 6000 - Chee Li
This model is a fine-tuned version of openai/whisper-medium on the Google Fleurs dataset. It achieves the following results on the evaluation set:
- Loss: 0.2240
- Wer: 6.3984
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 1e-05
- train_batch_size: 16
- eval_batch_size: 8
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- lr_scheduler_warmup_steps: 500
- training_steps: 4000
- mixed_precision_training: Native AMP
Training results
Training Loss | Epoch | Step | Validation Loss | Wer |
---|---|---|---|---|
0.0071 | 5.0251 | 1000 | 0.1866 | 6.2479 |
0.0004 | 10.0503 | 2000 | 0.2069 | 6.3091 |
0.0002 | 15.0754 | 3000 | 0.2203 | 6.3561 |
0.0002 | 20.1005 | 4000 | 0.2240 | 6.3984 |
Framework versions
- Transformers 4.43.4
- Pytorch 2.3.1+cu121
- Datasets 2.20.0
- Tokenizers 0.19.1
- Downloads last month
- 5
Model tree for CheeLi03/whisper-medium-pt
Base model
openai/whisper-medium